УДК 636.675/.087(470.12)

F. A. KIPRIYANOV, Associate Professor

Vologda State Dairy Farming Academy by N. V. Vereshchagin, Russian Federation, Vologda



Abstract. Dairy farming is one of the most specific branches of the national economy of Russia and one of the leading branches of the Vologda Oblast, one of the leaders in milk production, distinguished by high consumption of feed of plant origin. The dependence of dairy cattle not only on the volume of forage, but also on the energy value of the feed, decreasing both on the violation of the technologies of cultivation, harvesting, etc., and on the influence of other factors, makes it possible to emphasize the importance of increasing the efficiency of technologies to ensure feed in agricultural production. The Federal Scientific and Technical Program for the Development of Agriculture for 2017–2025 provides the solution of a whole range of tasks aimed at ensuring a stable growth in agricultural production. One of the objectives of the program is the creation and implementation of high-quality fodder production technologies, the solution of which should be based on an integrated approach that takes into account all aspects and specifics of agricultural production. The article proposes the formulation of feed supply as a complex problem affecting the efficiency of agricultural production. The main factors affecting the formation of the feed conveyor, their activating and destabilizing effect are considered, the problem of compensating for the reduction in the quantity and nutritional value of feed through additional purchases is indicated. The analysis of the structure of losses in the process of feeding, which includes the main losses in nutritional and energy value and loss in physical weight, is given. The reasons for this or that type of loss are analyzed, a way is outlined to reduce the losses and reduce the destabilizing influence of natural facts in the process of feeding.

Key words: feed, storage of fodder, storage distribution, nutritional value, energy value.



1. Zhuchenko A. A. Adaptivnaya strategiya ustojchivogo razvitiya sel'skogo hozyajstva Rossii v HKHI stoletii. Teoriya i praktika. M. : Agrorus, 2009–2011. T. I. 816 p.

2. Zhuchenko A. A. Adaptivnaya strategiya ustojchivogo razvitiya sel'skogo hozyajstva Rossii v HKHI stoletii. Teoriya i praktika. M. : Agrorus, 2009–2011. T. II. 624 p.

3. Valiev A. R. Povyshenie ehffektivnosti obrabotki pochvy v usloviyah Srednego Povolzh'ya putem sovershenstvovaniya mashin s rotacionnymi rabochimi organami: avtoref. dis. doktora tekhn. nauk: 05.20.01 / Valiev Ajrat Rasimovich; [Mesto zashchity: Chuvash. gos. s.-h. akad.]. Kazan', 2018. 39 s.

4. Federal'naya nauchno-tekhnicheskaya programma razvitiya sel'skogo hozyajstva na 2017−2025 gody. Utverzhdena postanovleniem Pravitel'stva RF ot 25 avgusta 2017 g. № 996.

5. Top-30: regiony-lidery v proizvodstve moloka v sel'hozpredpriyatiyah v yanvare-fevrale 2018 goda // Dairynews [Electronnyy resurs]. URL:  (data  obrashcheniya: 02.12.2018).

6. Novozhilov A. I. Vliyanie uslovij funkcionirovaniya tekhnologicheskih sistem na ehffektivnost' tekhnologij v rastenievodstve // Ehkologicheskie aspekty mekhanizacii proizvodstva rastenievodstva: mater. Mezhdunar. nauch.prak. konf. Varshava: Svetoch, 2010. pp. 192−196.

7. Pasin A. V., Aryutov B. A., Novozhilov A. I. Sezonnoe raspisanie i tempy vypolneniya polevyh mekhanizirovannyh rabot // Mekhanizaciya i ehlektrifikaciya sel'skogo hozyajstva. 2007. № 11. pp. 2–4.





УДК 576.3:620.9 

V. V. SCHMIEGEL, Advanced Doctor in Engineering Sciences, Professor

A. S. UGLOVSKY, Ph. D. of Engineering Sciences, Senior Lecturer

E. V. SOTSKAYA, Graduate student

Yaroslavl state agricultural academy, Russian Federation, Yaroslavl



Abstract. The impact on a biological cell (plant or animal) by a force electric field in the form of very short pulses causes the formation of temporary or permanent pores on the cell membrane. This phenomenon causes the permeability of the cell membrane, and if the intensity of the treatment is high enough, the destruction of the cell membrane occurs. It is especially important that the electrical energy stored on the membrane is completely convertible, that is, it can easily transfer to other forms of energy during the course of a number of processes. This is especially true of membrane transport, which provides for the exchange of substances between the cell and the environment. Under the influence of the electric field on the membrane, the movement of ions through the channels can be accelerated or slowed down (depending on the sign of the charge). Changes in the potential difference on the membrane under the influence of certain factors influence the functioning of membrane proteins such as enzymes, receptors, channels, carriers of substances, etc. Thanks to this, the regulatory role of bioelectric potentials in the functional activity of the cell can be realized. The article deals with a mathematical model that determines the strength of the electrostatic field acting on the plant cell. The mathematical model is built according to such parameters as: the capacity of the membrane and the nutrient medium of the cell, the conductivity of the cytoplasm and the relaxation time of the charge acting on the cell. The authors found the dependence of the charge relaxation time on the conductivity of the cytoplasm and the dielectric constant of the membrane.

Key words: electric field, membrane, dielectric constant, plant cell, electrode.



1. Opritov V. A., Pyatygin S. S., Retivin V. G. Bioehlektrogenez u vysshih rastenij. M. : Nauka, 1991. 214 р.

2. Hanai T., Koizumi N., Irimajiri A. A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance, Biophys. Struct. Mech. 1 (1975) рр. 285–294.

3. L. K. H. van Beek Dielectric behaviour of heterogeneous systems, Prog. Dielectr. 7 (1967)  рр 69–117.

4. Johnston D., Miao-Sin Wu S. Foundations of Cellular Neurophysiology, MIT press, 1995.





УДК 631.22:628.8/.9 

E. V. SESHUNOVA, Ph.D. of Engineering Sciences, Associate Professor

V. V. SCHMIEGEL, Advanced Doctor in Engineering Sciences, Professor

Yaroslavl State Agricultural Academy, Russian Federation, Yaroslavl



Abstract. An analysis of the characteristics of air that adversely affect the health and maintenance of animals and birds in livestock complexes and poultry farms is presented. The necessity of air ionization in these rooms is shown. The preparation of light and heavy air ions in indoor air is considered. Examples of the impact of negative ions on birds and animals are given. The mechanism of influence on them of negative aeroions is shown. Air ionization has a positive effect: it reduces air toxicity and cleans it of dust and microbes. Suspended particles of dirt and dust electrify and settle to the ceiling, walls, floor. The biological effect of ionizing radiation depends on the total dose and time of exposure to radiation, the size of the irradiated body surface and the individual characteristics of the organism. In livestock buildings saturated with water vapor, microorganisms and dust, the air contains a smaller amount of light negative ions compared to the air in well-ventilated rooms. In a practical way, it has been established that negatively charged light ions of air, as opposed to positively ionized air, have a more beneficial effect on the organism of animals and have therapeutic and hygienic significance.

Key words: air, livestock buildings, harmful factors, cows, pigs, birds, ionizer, production of light and negative ions.



1. Rudakov V. V. Aleksandrova S. K. Ionizaciya vozduha v zhivotnovodcheskih pomeshcheniyah L. : Agropromizdat, 1987. 64 p.

2. Ohrana okruzhayushchej sredy / pod red. S. V. Belova. M. : Vysshaya shkola, 2007. 616 p.

3. Rejnet Ya. Yu. Sravnitel'noe issledovanie aehroionizatorov // Uch. zap. TGU. Vyp. 631. Tartu, 1982. pp. 53−62.

4. Bioclimatology, biometeoroly and aeroiontherapy. Milan, 1968.

5. Hrenov M. N. Ionizaciya vozduha i ee vliyanie na sostoyanie i produktivnost' korov. M. : VOLASKHN, 1965. 20 р.

6. Prishchep L. G., Storchevoj V. F. Ozonirovanie i ionizaciya vozduha v kletkah dlya ptic // Mekhanizaciya i ehlektrifikaciya sel'skogo hozyajstva. 1995. № 8. pp. 19−21.

7. Chizhevskij A. L. Rukovodstvo po primeneniyu ionizirovannogo vozduha v promyshlennosti, sel'skom hozyajstve i v medicine. M. : Gosplanizdat, 1959. 56 p.

8. Minh A. A. Ionizaciya vozduha i ee gigienicheskoe znachenie. M., 1963.

9. Storchevoj V. F. Ionizaciya i ozonirovanie vozdushnoj sredy. M. : MGUP, 2003. 170 p.

10. Volkov G. K. Aehroionizaciya v zhivotnovodstve i veterinarii. M. : Kolos, 1969. 94 p.





УДК 631.316.5:531.65 

B. N. ORLOV, Advanced Doctor in Engineering Sciences, Professor

M. A. KARAPETYAN, Advanced Doctor in Engineering Sciences, Professor

N. A. MOCHUNOVA, Ph. D. of Engineering Sciences, Associate Professor

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Russian Federation, Moscow



Abstract. Analytical methods of kinematic studies of the donor-spatter mechanisms are considered, which are complex and therefore not always acceptable. The statement is substantiated that the kinematics of the working organ of the mechanisms of the donator   and its attachment to the base machine significantly affect the quality of work and the accuracy of keeping a given slope of the drainage trench, the slit. In recent years, considerable attention has been paid to this issue, as the number of constructions of complex industrialcivil and hydraulic structures and the quality requirements developed for them has increased. The developed method for analyzing the kinematics of the draining machines provides an opportunity to investigate the work of the kinematics of the working bodies analytically, to calculate the very complex trajectories of movement of the mechanism points, their speed and acceleration, which allows to improve the accuracy of laying the drainage slits of trenches   of complex and responsible industrial, civil and hydraulic structures. The main attention is paid to the fact that regardless of the complexity of the mechanism, the determination of the velocities and accelerations of the points of the links according to the developed method is reduced to the compilation and solution of linear equations. A comprehensive analysis method has been developed, which allows us to find kinematic relationships that cannot be obtained using other analysis methods.

Key words: kinematics, mechanisms, working bodies, geometry, methods, vector.



1. Orlov B. N., Karapetyan M. A., Bekishev B. T. Issledovanie ustalosti detalej tekhnologicheskih mashin i oborudovaniya na osnove teorii kinetiki razrusheniya // Mezhdunar. nauch.-prakt. konf. «Nauchnye issledovanie v oblasti tekhnicheskih nauk», g. Saratov, 2017. p. 11.

2. Orlov N. B., Karapetyan M. A., Orlov B. N. Teoriya kineticheskogo podhoda k issledovaniyu razrusheniya detalej mashin i oborudovaniya // Sb. nauch. tr. po itogam IV Mezhdunar. nauch.prakt. konf. «Problemy i dostizheniya v nauke i tekhnike», g. Omsk, 2017. p. 18.

3. Orlov N. B. Ocenka ekspluatacii MTP v usloviyah mashinno-tekhnologicheskih stancij // Mat. Mezhdunar. nauch.-prakt. konf. «Rol' melioracii i vodnogo hozyajstva v realizacii nacional'nyh proektov». Ch. II. M. : FGOU VPO MGUP, 2008.

4. Bondareva G. I., Orlov N. B. Vizualizaciya, modelirovaniya, nadyozhnost' v ekspluatacii mobil'nyh stroitel'no-dorozhnyh kompleksov // Izvestiya Samarskoj gosudarstvennoj sel'skohozyajstvennoj akad. 2012. Vyp. № 3. pp. 23−27.

5. Karapetyan M. A., Mochunova N. A. Vozdejstvie hodovyh sistem mashinno-traktornyh agregatov na plodorodie pochv: monografiya. M. : OOO «Megapolis», 2017. 133 p.





УДК 631.459.6

A. N. PRIVALENKO, Ph. D. of Engineering Sciences, Associate Professor

G. M. BALAK, Ph. D. of Chemical sciences

L. V. KRASNAYA, Ph. D. of Engineering Sciences

25th State research Institute of chemistry of Ministry of defense Russian Federation, Moscow

S. V. BOGDANOV, Advanced Doctor in Engineering Sciences, Professor

Russian State Agrarian University Moscow Timiryazev Agricultural Academy, Russian Federation, Moscow


Abstract. The formation of sediments in fuels and lubricants when used in transporttechnological machines and deposits on the surfaces of parts and components of production process equipment that are in contact with fuels and lubricants, has a significant impact on the performance of the corresponding equipment and instruments. It can cause a decreasing in the level of anti-wear properties of combustive-lubricating materials, deterioration of pumpability, flammability, combustibility, compatibility with construction materials, persistence and safety, etc. In accordance with this, the data on the composition of sediment and sediment must be considered as information that allows know the reasons for their education, and its receipt as an important scientific and technical problem. To solve this problem, the principles and proposed an algorithm for identifying the composition of sediments formed in the volume of fuel and lubricants during their use and storage, as well as sediments formed on the surface of components and parts of technological equipment and machinery products that are in contact with oil products. Conducting relevant research includes the stages of identifying objects whose composition is to be identified, studying their morphology and phase composition, fractionating their substance by extracting its components with solvents of different polarities, and studying the component and elemental composition of extracts and non-extractable residues using modern physical and physical-chemical analysis methods.

Key words: oil products, sediments, identification, separation, morphology, phase composition, component composition, elemental composition, physical research methods.



1. Kapustin V. M. Neftyanye i al'ternativnye topliva s prisadkami i dobavkami M.: KolosS, 2008. 232 p.

2. Denisov Е. T., Kovalev G. I. Okislenie i stabilizaciya reaktivnyh topliv. M. : Himiya, 1983. 272 p.

3. Bol'shakov G. F. Fiziko-himicheskie osnovy obrazovaniya osadkov v reaktivnyh toplivah. L. : Himiya, 1972. 231 p.

4. Danilov A. M. Vvedenie v himmotologiyu. M. : Tekhnika, OOO «TUMA-GRUPP», 2003. 464 p.

5. Grishin N. N., Sereda V. V. Enciklopediya himmotologii. M. : Pero, 2016. 960 p.

6. Little B. J., Lee J. S. Microbiologically Influenced Corrosion. John Wiley & Sons, Inc. Hoboken, 2007. 279 p.

7. Pentin Yu. A., Vilkov L. V. Fizicheskie metody issledovaniya v himii. M. : Mir, 2003. 683 p.

9. Goncharova I. S., Pyckij I. S., Buryak A. K., Ivanov N. G., Fedorov V. V. Mass-spektrometriya PALDI pri issledovanii klasterov v sostave nizkoteploprovodnyh otlozhenij // Sorbcionnye i hromatograficheskie processy. 2013. T. 13. Vol. 5. pp. 712–719.

10. Balak G. M., Privalenko A. N., Oreshenkov A. V., Krasnaya L. V., Zueva V. D., Smirnova I. A. Identifikaciya elementnogo sostava osadkov i otlozhenij, obrazuyushchihsya pri primenenii nefteproduktov, metodom plamennoj atomno-absorbcionnoj spektrometrii // Himiya i tekhnologiya topliv i masel. 2016. № 2. pp. 51–56.

8. Balak G. M., Privalenko A. N., Oreshenkov A. V., Krasnaya L. V. Metod plamennogo atomnoabsorbcionnogo opredeleniya soderzhaniya metallov v osadkah i otlozheniyah, obrazuyushchihsya pri primenenii nefteproduktov // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2015. № 6. pp. 65–74.

11. Krasnaya L. V., Oreshenkov A. V., Privalenko A. N., Balak G. M., Zueva V. D., Gavrilov P. A. Identifikaciya prisadok v gidravlicheskom masle MGЕ-10A metodom infrakrasnoj spektroskopii // Himiya i tekhnologiya topliv i masel. 2015. № 6. pp. 37–39.

12. Privalenko A. N., Balak G. M., Bagramova E. K., Zueva V. D., Pulyaev N. N. Atomno-absorbcionnoe opredelenie soderzhaniya metallov v neftyanyh toplivah // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2013. № 5. pp. 97–108.

13. Privalenko A. N., Balak G. M., Bagramova E. K., Zueva V. D., Pulyaev N. N. Opredelenie soderzhaniya vanadiya i natriya v ostatochnyh toplivah metodom plamennoj atomno-absorbcionnoj  spektrometrii  //  Mezhdunarodnyj  tekhniko-ekonomicheskij  zhurnal. 2013. № 4. pp. 95–103.

14. Privalenko A. N., Balak G. M., Zueva V. D., Pulyaev N. N. Opredelenie soderzhaniya metallov v toplivah dlya reaktivnyh dvigatelej metodom plamennoj atomno-absorbcionnoj spektrometrii // Mezhdunarodnyj nauchnyj zhurnal. 2012. № 4. pp. 95–100.










УДК 620.9+621.311.24

L. P. ANDRIANOVA, Advanced Doctor in Engineering Sciences, Professor

V. Yu. KABASHOV, Advanced Doctor in Engineering Sciences, Associate Professor

Bashkir State Agrarian University, Russian Federation, Ufa



Abstract. The perspective technologies of power supply of decentralized consumers based on renewable energy with the help of roof wind and solar power plants are considered. Practical recommendations for the improvement of the roofs of houses and office buildings for the installation of interceiling wind turbines and solar panels are given. In contrast to the known structures of the roofs of buildings, including supporting walls, ceiling and ceiling, made in the form of an inclined slope, in the new technical solution the roof of the building is made in the form of two horizontal ceilings the main (lower) and additional (upper) installed on racks. On the upper ceiling, a slope with a roof in the south side is installed with a slope equal to the geographical latitude. Recommendations are given on the installation of the tail end of a wind turbine on a free hub passing through the roof ceiling, under which it is provided with radial drivers with the guide vanes of the wind turbine on its shaft. Interceiling wind turbine contains a vertical shaft and two radial wind turbines, rotating under the action of the wind, and resulting in the rotation of the vertical shaft, from which the mechanical power is taken by the consumer according to the technological purpose. For installation on the roof of the building, an original solar microelectric power station is considered, containing a solar battery and an electric-powered vertical shaft equipped with a clock mechanism with an electrical contact system in the form of an hour-hand clock dial, giving an hourly signal to drive the vertical shaft of the azimuth sun tracking, and zenith tracking of the sun in the form of a vertical shaft tilt to the north. The solar cell generates the calculated solar electrical energy of a given DC voltage.

Key words: power supply, decentralized consumer, roof power plants, interceiling wind turbine, solar power station.



1. Rossijskie tekhnologicheskie platformy v oblasti ehnergoehffektivnosti i ispol'zovaniya vozobnovlyaemyh istochnikov ehnergii. M., 2011. 27 p.

2. Andrianova L. P., Rashitov A. R. Rossijskie perspektivnye tekhnologii vetrovoj i solnechnoj ehnergetiki // Novye zadachi tekhnicheskih nauk i puti ih resheniya: Sbornik statej Mezhdunarodnojnauchno-prakticheskojkonferencii(05.02.2017). Perm': NICAEHTERNA. № 11. V 3-h chastyah. Ch. 2. pp. 51−53.

3. Andrianova L. P., Rashitov A. R. Rossijskie tekhnologicheskie platformy v oblasti ehnergoehffektivnosti i ispol'zovaniya vozobnovlyaemyh istochnikov ehnergii // Novye zadachi tekhnicheskih nauk i puti ih resheniya: Sbornik statej Mezhdunarodnoj nauchno-prakticheskoj konferencii (05.02.2017). Perm' : NIC AEHTERNA. № 11. V 3-h chastyah. Ch. 2. pp. 53−56.

4. Pat. 94379 Rossijskaya Federaciya, MPK H 01 L 31/042 (2006.01), F 24J 2/38 (2006.01). Solnechnaya ehlektrostanciya / Andrianova L. P., Prokopov O. I., Tukbaeva A. E., Ahmetshin A. T.; zayavitel' i patentoobladatel' Andrianova L. P., Prokopov O. I., Tukbaeva A. E., Ahmetshin A. T.– № 2010103657/22 ; zayavl. 03.02.10 ; opubl. 20.05.10, Byul. № 14.

5. Andrianova L. P., Tukbaeva A. E. Povyshenie ehffektivnosti solnechnoj ehlektrostancii // Mekhanizaciya i ehlektrifikaciya sel'skogo hozyajstva. 2010. № 13. pp. 25−26.

6. Andrianova L. P., Usmanova A. E. Solnechnye ehnergeticheskie ustanovki s povyshennoj ehnergeticheskoj ehffektivnost'yu // Aktual'nye problemy ehnergoobespecheniya predpriyatij. Materialy mezhdunarodnoj nauch.-prakt. konf., provodimoj v ramkah HIV Rossijskogo ehnergeticheskogo foruma. Ufa : Bashkirskij GAU, 2014. pp. 18−23.





УДК (621.311:621.383).003.13

P. N. KUZNECOV, Senior Lecturer

E. V. GUSEVA, Ph.D. of Engineering Sciences, Associate Professor

E. A. DUBKOV, Senior Lecturer

Sevastopol State University, Simferopol', Russian Federation


Abstract. The article discusses the current state of photo-energy in Russia and the world, as well as the main directions of its development. The main technologies for improving the efficiency of photovoltaic plants, as well as a number of factors that impede their implementation, are presented. The existing technical solutions that increase the selection of electrical energy from photovoltaic plants operating in conditions of uneven illumination are described. It is shown that the use of such solutions is not universal, effective and economically viable. The article also describes the device developed by one of the authors of the article, which allows to increase the energy efficiency of the installation by matching the voltage of parallel-connected module arrays without converting all the energy they produce. The device allows for the selection of electrical energy from a parallel-connected shadowed array of photovoltaic modules at the point of maximum power, due to its voltage matching with other parallel-connected modules, which significantly increases its energy production.

Key words: photoelectricity, shading, efficiency increase, solar energy, uneven illumination, technical solutions, methods.



1. Razvitie solnechnoj energetiki / V. Gimadi, A. Amiragyan, I. Pominova i dr., pod red. L. Grigor'ev  44 izd. M. : Analiticheskij centr pri pravitel'stve Rossijskoj Federacii, 2017. 27 p.

2. IRENA − International Renewable Energy Agency [Elektronnyj resurs]. URL:

3. Renewable Energy Technologies: Cost Analysis Series. Solar Photovoltaics. June, 2012. Volume 1: Power Sector Issue 4/5. «IRENA», United Arab Emirates June, 2012.

4. Kuznecov P. N. Povyshenie energeticheskoj effektivnosti fotoelektricheskih stancij, rabotayushchih v usloviyah neravnomernoj osveshchennosti: dis. kand. tekhn. nauk / Kuznecov Pavel Nikolaevich / FGAOU VO "Sevastopol'skij gosudarstvennyj universitet". Sevastopol', 2018.

5. Kuznecov P. N., Yuferev L. Yu. Issledovanie povysheniya effektivnosti fotoelektricheskih ustanovok, rabotayushchih v usloviyah chastichnogo zateneniya // Vestnik agrarnoj nauki Dona. 2018. № 42. pp. 12−22.

6. Raushenbah G. Spravochnik po proektirovaniyu solnechnyh batarej / per. s angl. M. : Energoatomizdat, 1983. 360 p.

7. Amosov A. A., Dubinskij Yu. A., Kopchenova N. V. Vychislitel'nye metody dlya inzhenerov: uchebnoe posobie. M. : Vysshaya shkola, 1994. 544 p.

8. Golomazov Е. G. Koncepciya razrabotki elektronnogo modulya avtonomnogo pitaniya na osnove solnechnyh batarej // Izvestiya KGTU im. I. Razzakova. 2012. № 26. pp. 6−8.

9. Martins P. MPPT for a Photovoltaic Micro-Inverter / Faculdade de Engenharia da Universidade do Porto, 2012. 10. Tigo Energy, Inc. [Elektronnyj resurs]. URL

11. Micro-Inverters vs. Central Inverters // Energy Informative [Elektronnyj resurs]. URL:

12. Christabel S. C., Winston D. P., Kumar B. P. Reconfiguration solution for extracting maximum power in the aged solar PV systems // Journal of Electrical Engineering. 2016. №16. pp. 440–446.

13. Annsmol J., Stany E. G. Reconfiguration of Solar Array under Partial Shaded Condition for Maximum Energy Harvesting // International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2006. Vol. 5. Issue 9. pp. 7397−7402.

14. Pat. 2634590 Rossijskaya Federaciya, MPK H 02 J 7/35(2017.11), G 05 F 1/67. Sposob otbora elektricheskoj energii ot batarej fotoelektricheskih preobrazovatelej / Kuznecov P. N., Borisov A. A.; zayavitel' i patentoobladatel' Kuznecov Pavel Nikolaevich. – № 2016138181; zayavl. 26.09.16 ; opubl. 01.11.17, Byul. № 31.