Ivanov Y. A., Skorkin V. K., Aksenova V. P.

Optimization and modernization of dairy farms’ technological processes


Morozov N. M., Tsoy L. M., Rasskazov A. N.

Improving the efficiency of pork production based on the use of innovative technology


Gridnev P. I., Gridneva T. T.

The results of livestock premises’ nitrogen losses research


Martynova N. B., Katyunin A. D.

Ways to increase the productivity of a single bucket excavator with an automatic digging process


Tojgambaev S. K., Guzalov A. S.

Design of a mobile ditch hydraulic lift for repair work


Pukhov E. V., Zagoruyko K. V..

The results of experimental studies of the wear resistance of the surface of the crankshaft restored by the method of flame application of self-fluxing powders


Varnakov D. V., Varnakov V. V., Simachkov S. A.

Thе study tribotесhnika propеrtiеs of biodiеsеl basеd on rapеsееd oil


Mityagin G. E.

Methods for creating a database of car recycling technologies


Yurchenko I. F.

Digital systems integration into agriculture within the reclaimed lands


Kireycheva L. V., Yashin V. M.

The role of reclaimed land in diffuse pollution of waters with nutrients


Didmanidze R. N.

Factors affecting the quality of tea leaves





Leshchinskaya T. B., Tishkov V. V., Gruba A. A.

Rising the reliability of distribution rural electric networks


Kaminskiy A. V.

Use of similarity theory methods in the analysis and calculation of short-circuit currents


















DOI: 10.34286/1995-4638-2020-70-1-7-16

УДК 330.59:614.005.591.6


VLADIMIR А. PUCHKOV, Ph. D. of Engineering Sciences, Adviser to the President

PJSC UAC, Russian Federation, Moscow



Abstract. The paper presents the results of research on the optimization of dairy farms and  modernization of production processes. The economic efficiency of construction and operation  of dairy farms of various capacities is determined. The comparative effectiveness of using  various technical means in performing technological operations on dairy farms is given, and  recommendations for production are given. According to a number of foreign and domestic  scientists, the economic efficiency of agricultural enterprises depends on many factors. The  most determining factor in milk production is the capacity of dairy farms and complexes.  In European countries, the farming system has determined the size of dairy farms of 20–100  cows. There are 800–2000 cows or more in the USA and Canada. In Russia, due to the large  territories and the lack of well-maintained access roads and roads, the construction of farms  and complexes of high capacity is not rational. The computer program developed by the authors  makes it possible to determine the optimal size of dairy farms for various regions of Russia.

Key words: optimization, dairy farm, productivity, cost, profitability, modernization of  production.



1. Rasskazov A. N. Itogi sel'skohozyajstvennoj perepisi 2016 goda [Results of the 2016 agricultural census]  // Vestnik VNIIMZH. 2018. № 4 (32). pp. 154−158.

2. Strategiya razvitiya mekhanizacii i avtomatizacii zhivotnovodstva na period do 2030 goda [Strategy for the  development of mechanization and automation of animal husbandry for the period up to 2030] / N. M.  Morozov, P. I. Gridnev, Yu. A. Ivanov i dr. M. : FGBNU "Rosinformagrotekh". 2015. 150 p.

3. Ivanov Yu. A., Skorkin V. K., Larkin D. K. Komp'yuternaya programma ekonomiko-matematicheskoj  modeli po obosnovaniyu parametrov tiporazmernogo ryada molochno-tovarnyh ferm [Computer program of the economic and mathematical model for substantiating the parameters of a standard-sized series  of dairy farms] // Svidetel'stvo № 2013660862 ot 20.11.2013.

4. Metodika opredeleniya ekonomicheskoj effektivnosti sozdaniya i primeneniya innovacionnoj tekhniki i mashinnyh  tekhnologij vypolneniya processov pri proizvodstve produkcii zhivotnovodstva [Methods for determining the  economic efficiency of creating and applying innovative technology and machine technologies for  performing processes in the production of livestock products] / N. M. Morozov, I. I. Husainov, Yu. A.  Mirzoyanc i dr. M. , 2019. 59 p.

5. Skorkin V. K., Larkin D. K., Aksenova V. P. Issledovanie vliyaniya razlichnyh tekhnologij  soderzhaniya zhivotnyh i razmera ferm na ekonomicheskuyu effektivnost' proizvodstva moloka [Investigation of the influence of various technologies for keeping animals and the size of farms  on the economic efficiency of milk production] // Tekhnika i oborudovanie dlya sela. 2019. № 7.  pp. 44−47.

6. Skorkin V. K., Larkin D. K., Skorkin A. V. Obosnovanie optimal'nyh razmerov molochnyh ferm v Rossii [Justification of the optimal size of dairy farms in Russia] // Tekhnika i oborudovanie dlya sela. 2016.  № 12 (234). pp. 28−31.

7. Surovcev V. N. Koncepciya pogolov'ya v molochnom skotovodstve i problemy ee optimizacii [Concept  of livestock in dairy cattle breeding and problems of its optimization] // Molochnoe i myasnoe  skotovodstvo. 2015. № 6. pp. 2−6.

8. Ushachev I. G., Serkov A. F., Maslova V. V., Chekalin V. S. Rostu i razvitiyu promyshlennogo proizvodstva  neobhodim kompleksnyj podhod [The growth and development of industrial production requires an  integrated approach] // APK: ekonomika, upravlenie. 2016. № 4. pp. 4−14.

9. Buzdalov I. N. Obespechenie prioritetnogo razvitiya sel'skogo hozyajstva – glavnoe v strategii agrarnoj politiki [Ensuring priority development of agriculture – the main thing in the strategy of agricultural policy]  // Ekonomika pererabatyvayushchih predpriyatij. 2015. № 4. pp. 2−13.





DOI: 10.34286/1995-4646-2020-73-4-16-23

УДК 631.14:636.


NIKOLAY M. MOROZOV, Academician of the Russian Academy of Sciences, Advanced Doctor in Economic Sciences, Head of the Laboratory

LEONID M. TSOY, Advanced Doctor in Economic Sciences, Professor, Head of the Laboratory

ALEXANDR N. RASSKAZOV, Ph. D. of Economic Sciences, Senior Research Officer

Federal Scientific Agroengineering Center VIM, Institute of Mechanization of Animal Husbandry,  branch, Russian Federation, Moscow



Abstract. Analysis of pig farming in the country has shown that the industry is developing along  the path of consolidation, integration, concentration, specialization, and the creation of large  industrial associations based on pig enterprises. The main constraining problems affecting the  growth of the industry's efficiency are identified. Calculations of the number of pigs in Russia (at  the end of the year) were made. The production of pigs for slaughter was analyzed. Calculation  of production of pigs for slaughter is carried out. Recommended machines and equipment for  different age and gender groups. Technological indicators achieved in Russia and their forecast  for 2030 in accordance with the strategy for the development of mechanization and automation  of animal husbandry for the period up to 2030 are considered. A comparison of technological indicators of pork production in Russia and in foreign countries is made. Studies have shown  that the most effective pork production facilities are those that produce their own feed, fattening,  slaughtering, processing pork and selling their products. Suggestions for further development of  pig breeding in Russia are given.

Key words: agro-industrial complex, animal husbandry, pig breeding, technology, efficiency,  innovative equipment, modernization, digital technologies.



1. Svinovodstvo−2017. Nasyshchenie vnutrennego rynka – glavnyj faktor neobhodimosti eksportoorientirovannoj  strategii [Pig breeding-2017. Saturation of the domestic market is the main factor in the need for an  export-oriented strategy]: Materialy IX Mezhdunarodnoj nauchno-prakticheskoj konferencii. M. ,  2017. pp. 54.

2. Morozov N. M., Rasskazov A. N. Napravleniya razvitiya tekhnicheskogo progressa v mekhanizacii i  avtomatizacii zhivotnovodstva [Directions of development of technical progress in mechanization and  automation of animal husbandry] // Materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii  / Nauchno-prakticheskij centr Nacional'noj akademii nauk Belarusi po mekhanizacii sel'skogo  hozyajstva. Minsk, 2016. Tom 1. pp. 20−29.

3. Ivanov Yu. A. Napravleniya tekhnicheskoj modernizacii pri proizvodstve produkcii zhivotnovodstva  [Directions of technical modernization in the production of livestock products] // Vestnik VNIIMZH. 2015. № 1(17). pp. 3−8.

4. Izmajlov A. Yu. ntellektual'nye tekhnologii i robotizirovannye sredstva v sel'skohozyajstvennom proizvodstve [Intelligent technologies and robotic tools in agricultural production] // Vestnik Rossijskoj akademii  nauk. 2019. T. 89, № 5. pp. 536–538. DOI:

5. Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms / L. Latruffe  [et al.] // American Journal of Agricultural Economics. 2017. Vol. 99, Issue 3. pp. 783–799. DOI: https://

6. Wasserstein R. L., Lazar N. A. The Asa’s Statement on P-Values: Context, Process and Purpose //  The American Statistician. 2016. Vol. 70, no. 2. pp. 129–133. DOI: 16.1154108.

7. Morozov N. M., Gridnev P. I. i dr. Strategiya razvitiya mekhanizacii i avtomatizacii zhivotnovodstva  na period do 2030 goda [Strategy for the development of mechanization and automation of animal  husbandry for the period up to 2030]. M. : Rosinformagrotekh, 2015. pp. 149.

8. Coj L. M. Razrabotka i issledovanie vibracionnogo razdatchika suhih kormov dlya kormleniya porosyat ot"emyshej [Development and research of a vibration distributor of dry feed for feeding weaned piglets]  // Vestnik VNIIMZH. 2016. № 1(21). pp. 80−86.

9. Syrovatka V. I. i dr. Barotermicheskaya obrabotka ingredientov kombikormov [Barothermal treatment of  feed ingredients] // Inzhenernye tekhnologii i sistemy. 2019. T. 29, № 3. pp. 428–442. DOI: https://doi. org/10.15507/2658-4123.029.201903.428-442.

10. Morozov N. M., Coj L. M., Rasskazov A. N. Perspektivy primeneniya cifrovyh tekhnologij v svinovodstve  [Prospects of application of digital technologies in pig breeding] // Mezhdunarodnyj tekhniko ekonomicheskij zhurnal. 2018. № 5. pp. 50−59.

11. Ivanov Y. A., Mironov V. V. Test Results In-Vessel Composting System At The Cattle Farm Located  In The Central Part Of Russia AMA, Agricultural Mechanization In Asia, Africa аnd Latin America.  2018. T. 49. № 3. pp. 86−90.

12. Morozov N. M. i dr. Perspektivy primeneniya cifrovyh tekhnologij v svinovodstve [Prospects for the  use of digital technologies in pig breeding] // Mezhdunarodnyj ekonomicheskij zhurnal. 2018. № 5.  pp. 50–58.

13. Morozov N. M., Rasskazov A. N. Directions of increasing the competitiveness of livestock products  in Russia // IOP Conference Series: Earth and Environmental Science. 2019. V. 403. pp. 012117.

14. Morozov N. M. i dr. Metodika opredeleniya ekonomicheskoj effektivnosti sozdaniya i primeneniya  innovacionnoj tekhniki i mashinnyh tekhnologij vypolneniya processov pri proizvodstve produkcii zhivotnovodstva [Methodology for determining the economic efficiency of creating and applying innovative technology  and machine technologies for performing processes in the production of livestock products]. M. :  Rosinformagrotekh, 2019. 58 p.




DOI: 10.34286/1995-4646-2020-73-4-24-31

УДК 631.22:636.


PAVEL I. GRIDNEV, Advanced Doctor in Engineering Sciences, director deputy for scientific work

TATIANA T. GRIDNEVA, Ph. D. of Engineering Sciences, Leading research worker

Federal Scientific Agroengineering Center VIM, Institute of Livestock Mechanization Russian Federation, Moscow



Abstract. A number of main technological and technical solutions that affect the reduction of  nitrogen losses in the form of ammonia in livestock facilities for keeping cattle and breeding pigs  are analyzed. Proposals are presented to reduce nitrogen losses, which will improve the state  of the environment, increase the efficiency of production and use of organic fertilizers. It was  found that the excess of nitrogen in feed contributes to an increase in the amount of nitrogen  entering the manure. Increasing the productivity of cows from 10 to 40 kg per day doubles the  nitrogen retention in the animal's body. The formation of a diet for each phase when fattening  pigs reduces nitrogen release by 21...25 %. Additives of the drug "Triyun" to liquid pig manure  reduce the concentration of ammonia in the air of the room up to seven times. The use of sloping  floors with a litter consumption of up to 0.1 kg per head per day, bioactive additives and rational  organization of pig dens halve ammonia emissions. The use of geothermal heat exchangers for ventilation of premises for keeping pigs helps to reduce ammonia emissions by at least 25 %.  Minimum nitrogen losses in the room with tethered cows-8.1 % are achieved when using screw  conveyors, with loose content, losses can be reduced to 16.8 % when using scraper installations  with step-by-step movement of the scraper.

Key words: nitrogen loss, ammonia emission, productivity, rations, indoor climate, technical  means of manure removal.



1. Gridnev P. I., Gridneva T. T. Rezul'taty modelirovaniya urovnya zagryazneniya okruzhayushchej sredy pri  proizvodstve moloka i svininy [Results of modeling the level of environmental pollution in the production  of milk and pork] // Vestnik VNIIMZH. № 2 (18). 2015. pp. 28−33.

2. Redelberger H. Management – Handbuch fur die okologische Landwirtschaft // KTBL № 426. 2004.  pp. 37−43.

3. Bockmann H-C., Junge W., Kalm E. Einflussfaktoren auf die Stickstoffausscheidung von  Milchkuhen / Beitrage zur 4. Wissenschaftstagung zum Okologischen Landbau. Bonn. 1997. pp.  502−509.

4. Mayer J. Einsatzstrategien fur Wirtschafts- und Sekundarrohstoffdunger im okologischen Landbau  // KTBL-Schrift 444. 2006. pp. 115−131.

5. Sundrum A. Rinderhaltung. Nahrstoffmanagement im Okologischen Landbau // KTBL-Schrift 423.  2004. pp. 45−70.

6. Bestimmungsfaktoren der Gullecharakteristik beim Schwein / M. Kirchgessner, M. Kreuzer, D. A.  Roth-Meier und an / Agribiol. Res. 44. 1991. pp. 325−344.

7. Influence of dietary factor on then pH and ammonia emission of slurry farm growing-finishing pigs  / T. T. Canh, A. J. Aarnik, M. W. Verstegen / J Anim Sci. 76 (4). 1998. pp. 1123−1130.

8. Gridnev P. I., Gridneva T. T. Rezul'taty eksperimental'nyh issledovanij po opredeleniyu emissii azota v  processe uborki navoza iz pomeshcheniya [Results of experimental studies on the determination of  nitrogen emissions in the process of cleaning manure from the premises] // Vestnik Vserossijskogo  nauchno-issledovatel'skogo instituta mekhanizacii zhivotnovodstva. 2017. № 3 (27). pp. 119−123.

9. Bleizgys R., Bagdoniene I., Balezentiene L. Reduction of the Livestock Ammonia Emissionen unter  the Changing Temperature during the Initial Manure Nitrogen Biomineralization // The Scientific  World Journal Volume 2013. Article ID 825437, 7 p. URL:

10. NH3-, N2O- und CH4- Emission aus einem Schragbodenstall fur Mastschweine / B. Amon, M.  Frolich, V. Kryvoruchko / Landtechnik, № 5. 2005. pp. 274−275.

11. Gridnev P. I., Gridneva T. T., Luk'yanenko I. P., Gromenko O. V. Rezul'taty issledovaniya emissii ammiaka  iz svinogo navoza pri ispol'zovanii biopolimera "Triyun" [Results of the study of ammonia emission from pig  manure when using the biopolymer "Triyun"] // Tekhnika i oborudovanie dlya sela. 2018. № 7. pp. 28−31.

12. Keck M. Untersuchungen zur Reduzierung der Ammoniakfreisetzung aus einzulosenden  Haltungssystemen fur Schweine / Dis. VDI-MEG Schrift. 1997. № 299.

13. Venzlaff F-W., Muller H-J.Untersuchungen zur Verbesserung der Klimagestaltung in Schweines tallen bei gleichzeitiger Verringerung der Emissionen/ Ministerium fur Landliche Entwicklung,  Umwelt und Verbraucherschutz des Landes Brandenburg (MLUV). Ruhlsdorf, April 2008. 45 pp.





DOI: 10.34286/1995-4646-2020-73-4-32-37

УДК 331.101.6:621.87


NATALIA B. MARTYNOVA, Ph. D. of Engineering Sciences, Associate Professor

ALEXEY D. KATYUNIN, Master’s Degree

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The features of the technological cycle of a single-bucket excavator with working  equipment "reverse shovel"are investigated. A certain problem is the limited visibility when  developing the ground below the level of the excavator Parking lot. Factors that affect the performance of the machine are noted. The norms of execution time for individual operations  are analyzed and the degree of influence of each factor on the duration of the technological cycle  is studied. It is established that optimization of the digging time, as the main component of the  technological cycle of soil development, will significantly increase the productivity of the machine.  The degree of influence of the human factor is noted: the qualification of the driver, the degree  of his fatigue, the duration of work on the duration of the operations under consideration. Ways  to optimize the technological cycle of work production are considered and recommendations  for its improvement are presented. The analysis made it possible to determine the parameters  for ensuring the bucket's filling capacity: the optimal values of the angle of penetration of the  working body into the ground and the chip thickness. The possibility of using automation tools  when performing individual technological operations is investigated, and ways to reduce the  time of individual operations when using automatic tools are analyzed. It is noted that the use  of automation will solve the problem of increasing the working cycle time during the shift due  to driver fatigue. Various methods of determining the distance to the face surface are analyzed  in order to ensure the specified values of the bucket depth angle in the ground and development  with a given chip thickness. The use of laser sensors to determine the depth of the bucket is  proposed, and the composition of the necessary equipment to ensure the performance of the  technological cycle under study in automatic mode is considered.

Key words: excavator working equipment, chip thickness, bucket parameters, excavator  operation cycle, range finder, digging process, working position, automatic mode.



1. Balovnev V. I., Danilov R. G. Odnokovshovye stroitel'nye pogruzchiki [Single-Bucket construction  loaders] // Stroitel'nye i dorozhnye mashiny. 2019. № 4. pp. 3−10.

2. Ivanchenko S. N., Shemyakin S. A., Leshchinskij A. V., Belov V. E. Sovershenstvovanie konstrukcij  kovshej vyemochnyh mashin [Improvement of bucket designs for dredging machines] // Vestnik  gosudarstvennogo tihookeanskogo universiteta. 2013. № 3. pp. 67−72.

3. Kizyaev B. M., Martynova N. B. Realizaciya nauchnyh proektov v sfere razvitiya meliorativnogo kompleksa  Rossii [Implementation of scientific projects in the field of development of the reclamation complex of  Russia] // Prirodoobustrojstvo. 2015. № 5. pp. 13−17.

4. Puninskij V. S. Sistema mashin dlya kompleksnoj mekhanizacii meliorativnyh rabot kak osnova uluchsheniya  degradirovannyh kormovyh ugodij Nechernozem'ya [Machine system for complex mechanization of  reclamation works as a basis for improving degraded forage lands of the non-Chernozem region] //  Kormoproizvodstvo. 2019. № 6. pp. 38−48.

5. Zorin V. A., Baurova N. I., Balovnev V. I., Grib V. V., Kosenko E. A. Informational model of state  change in a mechanical system // Russian Engineering Research. 2019. T. 39. № 8. pp. 680−682.

6. Abdulmazhidov H. A., Matveev A. S.Kompleksnoe proektirovanie i prochnostnye raschety konstrukcij  mashin prirodoobustrojstva v sisteme Inventor Pro [Complex design and strength calculations of structures  of nature management machines in the Inventor Pro system] // Vestnik FGOU VPO "Moskovskij  gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2016. № 2. pp. 40−46.

7. Zhalnin E. V.O fundamental'nosti zemledel'cheskoj mekhaniki [On the fundamental nature of agricultu ral mechanics] // Vestnik FGOU VPO "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni  V. P. Goryachkina". 2017. № 6(82). pp. 10−14.

8. Korneev A. Yu., Martynova N. B. Obosnovanie konstrukcii mnogostoechnogo dvuhryadnogo ryhlitelya [Justification of the design of a multi-post two-row ripper] // Izvestiya Nizhnevolzhskogo agrouni versitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie. 2017. № 1(45). pp. 271−277.

9. Orlov B. N., Karapetyan M. A., Mochunova N. A. Kinematicheskij analiz mekhanizmov drenoukladchikov [Kinematic analysis of drainers ' mechanisms] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal.  2019. № 1. pp. 41−46.

10. Melikhov V. V., Novikov A. A., Medvedeva L. N., Komarova O. P. Green technologies: the  basis for integration and clustering of subjects at the regional level of economy // Contributions to  economics, 2017. pp. 365−382.




DOI: 10.34286/1995-4646-2020-73-4-38-44

УДК 621.85/86.001.13


SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Professor

ARTYOMBEK S. GUZALOV, Teaching Assistant

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The problem of repair, maintenance, diagnostics, storage and disposal of motor  vehicles remains urgent. All these actions are performed on special equipment designed for  specific technological operations for car repairs. A stable mode of car repair production  is provided by the coordinated and trouble-free operation of various lifting machines and  mechanisms (PM and M). The closest to the proposed technical problem and the achieved result  is a mobile hydraulic lift, containing a frame with wheels, foldable boom with sharnirno-linkage  and upper and lower sections, connected with the reference node, and the actuator vertical  movement of the foldable boom having a hydraulic cylinder associated with the lower section  of the boom pivotally connected at one end to the frame, and a flexible rod, fixed at one end to the upper boom section and the other end is fixed to the frame. However, the well-known mobile  hydraulic lift does not have the ability to accurately bring the outer end of the upper section of  the boom to the place where the load is installed without additional maneuvering. The article  presents the principal removal of a mobile ditch hydraulic lift, designed for hanging over the  inspection ditch or lift front or rear axles of passenger cars, as well as individual units of the car.  Calculations of modes and strength calculations of individual parts are carried out.

Key words: car, hydraulic lift, carriage, rolling stock, layout, structural safety.



1. Tojgambaev S. K., Didmanidze O. N. Ekonomiko-matematicheskaya model' komplektovaniya i  tekhnicheskogo obsluzhivaniya parka mashin proizvodstvennyh predpriyatij Kostanajskoj oblasti s uchetom  mezhkhozyajstvennyh svyazej [Economic and mathematical model of acquisition and maintenance of the  fleet of machines of production enterprises of Kostanay region, taking into account inter-economic  relations] // Ekonomicheskie issledovaniya i razrabotki. 2020. № 5. pp. 184–195.

2. Levshin A. G., Stadnik A. V., Dryamov S. Yu. Identifikaciya i elektronnye pasporta samohodnoj tekhniki [Identification and electronic passports of self-propelled equipment] // Sel'skij mekhanizator. 2019. №  12. pp. 14–15.

3. Tojgambaev S. K. Realizaciya Stend dlya obkatki i ispytaniya dvigatelej [Stand for running-in and testing of engines] // Aktual'nye problemy sovremennoj nauki. 2014. № 5 (78).

4. Tojgambaev S. K. Povyshenie dolgovechnosti detalej sel'skohozyajstvennyh i meliorativnyh mashin pri  primenenii processa termociklicheskoj diffuzionnoj metallizacii [Increasing the durability of agricultural and  reclamation machine parts when using the process of thermocyclic diffusion metallization]: dis. …  kand. tekhn. nauk : 05.20.04 / Tojgambaev Serik Kokibaevich. M. : MGUP imeni N. A. Kostyakova,  2000. 136 p.

5. Devyanin S. N., Shchukina V. N. V sbornike: Sbornik statej po itogam II mezhdunarodnoj  nauchno-prakticheskoj konferencii "Goryachkinskie chteniya" posvyashchennoj 150-letiyu so dnya  rozhdeniya akademika V. P. Goryachkina. 2019. pp. 480–485.

6. Leonov O. A., Shkaruba N. Zh. Raschet zatrat na kontrol' tekhnologicheskih processov remontnogo  proizvodstva [Calculation of costs for control of technological processes of repair production] // Vestnik  FGOU VPO MGAU. 2004. № 5. pp. 75–77.

7. Erohin M. N., Leonov O. A.Vzaimosvyaz' tochnosti i nadezhnosti soedinenij pri remonte sel'skohozyajstvennoj  tekhniki [The relationship between accuracy and reliability of connections in the repair of agricultural  machinery] // Vestnik FGOU VPO MGAU. 2006. № 2. pp. 22–25.




DOI: 10.34286/1995-4646-2020-73-4-45-52

УДК 621.85/86.001.13


EVGENIY V. PUKHOV, Advanced Doctor in Engineering Sciences, Head of Department


Voronezh State Agrarian University named after Emperor Peter the Great, Russian Federation, Voronezh



Abstract. The development of the agro-industrial complex of the Russian Federation is one of  the strategic tasks of the country's security. An important place among the main directions of  solving this problem is to provide agriculture with high-quality equipment and maintain its  performance throughout the entire period of operation. The implementation of these measures  is not least related to the organization of effective repair of worn-out machine parts. Crankshafts  are among the most expensive components that are subject to constant abrasive wear. Restoration  of the damaged surface layer of the shaft necks is performed by various methods. Gas-flame application of self-fluxing powders is a technically simple and cost-effective method that allows  not only to restore the part, but also to strengthen it. In this regard, an important aspect is the  optimal choice of powder, which allows you to get a restored layer with the required quality  characteristics. Restoration quality control is performed in accordance with the regulatory  standards that establish the procedure and methodology for testing. The article describes the  results of experimental studies of the wear resistance of the crankshaft surface restored by the  method of gas-flame deposition of self-fluxing powders. The results of actual experiments that  allow choosing the most wear-resistant material for restoring and strengthening the surface  layer of parts based on a comparative analysis are presented.

Key words: wear resistance, friction testing, flame deposition, self-fluxing powders, restoration  of agricultural machinery parts.



1. Ivanov V. P. Remont mashin. Tekhnologiya, oborudovanie, organizaciya [Repair of cars. Technology,  equipment, organization]. Novopolock : UO "PGU", 2006. 468 p.

2. Vlasov V. M. Rabotosposobnost' uprochnennyh trushchihsya poverhnostej [Operability of reinforced  rubbing surfaces]. M. : Mashinostroenie, 1987.

3. Emtsev V. V. Hardening parts by chrome plating in manufacture and repair / V. K. Astanin, E. V.  Pukhov, Y. A. Stekolnikov, V. V. Emtsev, O. A. Golikova // IOP Conference Series: Materials Science and  Engineering, Volume 327, Material Science in Mechanical Engineering, 2018.

4. Ivanov V. I. O roli vosstanovleniya i uprochneniya detalej i instrumentov dlya povysheniya effektivnosti  deyatel'nosti predpriyatij APK [On the role of restoration and strengthening of parts and tools to improve the efficiency of agricultural enterprises] // Trudy GOSNITI. 2012. № 1. pp. 139−147.

5. Stanchev D. I., Kadyrmetov A. M., Klyuchnikov V. I., Yakovlev K. A. Vosstanovlenie detalej mashin  gazotermicheskimi sposobami [Restoration of machine parts by gas-thermal methods]: uchebnoe posobie.  Voronezh : VGLTA, 2003. 83 p.

6.Korobov Yu. S., Panov V. I., Razikov N. M. Analiz svojstv gazotermicheskih pokrytij [Analysis of  properties of gas-thermal coatings]: uchebnoe posobie: v 2 ch. Ch. 1: Osnovnye metody i materialy  gazotermicheskogo napyleniya [Basic methods and materials of gas-thermal spraying]. Ekaterinburg :  Ural'skij universitet, 2016. 80 p.

7. Kuz'min V. I. Plazmennoe napylenie iznosostojkih pokrytij iz poroshkov samoflyusuyushchihsya splavov [Plasma deposition of wear-resistant coatings from self-fluxing alloy powders] / V. I. Kuz'min [i dr.] //  Vestnik Yugorskogo gosudarstvennogo universiteta. 2015. № 2 (37). pp. 45–52.

8. Il'yushchenko A. F., Shevcov A. I., Okovityj V. A. Processy formirovaniya gazotermicheskih pokrytij i  ih modelirovanie [Processes of formation of gas-thermal coatings and their modeling]: monografiya.  Minsk : Belaruskaya navuka, 2011. 357 p.

9. Kuksenova L. I., Gerasimov S. A., Lapteva V. G. Iznosostojkost' konstrukcionnyh materialov [Wear  resistance of structural materials]. M. : MGTU imeni N. E. Baumana, 2011. 237 p.

10. Turilina V. Yu. Materialovedenie. Mekhanicheskie svojstva metallov. Termicheskaya obrabotka metallov.  Special'nye stali i splavy [Material Science. Mechanical properties of metals. Heat treatment of metals.  Special steels and alloys]: uchebnoe posobie / V. Yu. Turilina; pod red. S. A. Nikulina. M. : Izdatel'skij  Dom MISiS, 2013. 154 p. URL:

11. Garkunov D. N., Mel'nikov E. L., Gavrilyuk V. S. Tribotekhnika [Tribotechnika]. M. : KnoRus, 2017. 408 p.

12. GOST 23.224−86 Obespechenie iznosostojkosti izdelij. Metody ocenki iznosostojkosti vosstanovlennyh detalej [Ensuring wear resistance of products. Methods for assessing the wear resistance of restored parts].  M. : Standartinform, 2005.

13. Kombalov V. S. Metody i sredstva ispytanij na trenie i iznos konstrukcionnyh i smazochnykh materialov [Methods and means of testing for friction and structural wear and iubricants]: spravochnik / pod red.  K. V. Frolova, E. A. Marchenko. M. : Mashinostroenie, 2008. 384 p.

14. Beloglazov I. N., El'-Salim S. Z. Obrabotka rezul'tatov eksperimenta [Processing the results of the  experiment]. M. : ID "Ruda i Metally", 2004. 130 p.

15. Puhov E. V., Zagorujko K. V. Analiz tekhnologii vosstanovleniya detalej termicheskimi metodami [Ana lysis of the technology of restoration of parts by thermal methods] // V sb.: Problemy razvitiya tekhnologij  sozdaniya, servisnogo obsluzhivaniya i ispol'zovaniya tekhnicheskih sredstv v agropromyshlennom  komplekse: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii; pod obshchej redakciej  N. I. Buhtoyarova, V. I. Orobinskogo. 2017. pp. 355−361.

16. Puhov E. V., Zagorujko K. V., Shchegolev I. V. Kontrol' kachestva termicheski vosstanovlennyh detalej v  usloviyah sel'skogo hozyajstva [Quality Control of thermally restored parts in agricultural conditions] // V  sb.: Avtotransportnaya tekhnika XXI veka: Sbornik statej III Mezhdunarodnoj nauchno-prakticheskoj  konferencii; pod red. O. N. Didmanidze, N. E. Zimina, D. V. Vinogradova. 2018. pp. 111−117.

17. Puhov E. V., Zagorujko K. V. Vosstanovlenie detalej gazotermicheskim plakirovaniem na servisnyh  predpriyatiyah sel'skogo hozyajstva [Restoration of parts by gas-thermal cladding at service enterprises of  agriculture] // Prioritetnye napravleniya nauchno-tekhnologicheskogo razvitiya agropromyshlennogo  kompleksa Rossii: Materialy Nacional'noj nauchno-prakticheskoj konferencii 22 noyabrya 2018 goda.  Ryazan' : Izdatel'stvo Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta, 2019.  Chast' III. pp. 56−58.




DOI: 10.34286/1995-4646-2020-73-4-53-62

УДК 662.767.2:665.334.94-044.952


DMITRIY V. VARNAKOV, Advanced Doctor in Engineering Sciences, Associate Professor

VALERIY V. VARNAKOV, Advanced Doctor in Engineering Sciences, Professor Ulyanovsk State University

Russian Federation, Ulyanovsk

SERGEY A. SIMACHKOV, Senior Lecturer

National University of Oil and Gas “Gubkin University”, Russian Federation, Moscow



Abstract. Questions of tribological properties of biodiesel based on rapeseed oil are considered.  The methods presented in the article are universal and allow optimizing the ratio of biodiesel  components. Compliance with the requirements of modern international environmental standards for diesel fuel leads to the need to add components of plant origin. One of the most  suitable components of biodiesel is rapeseed oil. The practice of using highly refined fuels in a  number of countries in Western Europe and the United States shows that reducing the content  of harmful substances in exhaust gases is accompanied by premature failure of precision pairs  of fuel supply equipment, including plunger pairs of high-pressure fuel pumps. Previously, it was  found that biodiesel is superior to diesel in terms of environmental parameters, and rapeseed oil  is one of the cheapest of all vegetable oils produced. The use of biodiesel based on rapeseed poses  new challenges for manufacturers of automotive equipment, as it requires studying its impact  on fuel equipment. In the course of research, the tribological properties of biodiesel fuel were  studied using the ISO 12156-1:1997 method on a high-frequency reciprocating device (HFRR).  Biodiesel fuel with different rapeseed content was studied and its tribological characteristics  were determined.

Key words: mixed fuel, biodiesel, biofuel quality indicators, rapeseed oil, low-temperature  properties.



1. Pat. 2340655 Rossijskaya Federaciya MPK S 10 L 1/183 (2006.01). Primenenie 2,6-DI-TRET BUTILGIDROKSITOLUOLA dlya povysheniya okislitel'noj stabil'nosti pri hranenii / Ingendo Aksel' (DE),  Roter Kristian (DE), Hajze Klaus-Peter (DE). № 2005118759/04 ; zayavl. 08.07.2003 ; opubl. 10.12.2008.  Byul. № 34.

2. Shiperova T. P., Pushchin V. A. Biotoplivo i ego prakticheskoe primenenie [Biofuels and its practical  application] // Avtotransportnoe predpriyatie. 2009. № 3. pp. 16−18.

3. Didmanidze O. N., Karev A. M., Mityagin G. E. O perspektivah razvitiya avtomobil'nogo transporta  v agropromyshlennom komplekse [On the prospects for the development of automobile transport in the  agro-industrial complex] // Mezhdunarodnyj nauchnyj zhurnal. 2016. № 1. pp. 53–65.

4. Markov V. A., Ivashchenko N. A., Devyanin S. N., Nagornov S. A. Ispol'zovanie biotopliv na osnove  rastitel'nyh masel v dizel'nyh dvigatelyah [Use of biofuels based on vegetable oils in diesel engines] //  Vestnik MGTU imeni N. E. Baumana. Ser. Mashinostroenie. 2012. pp. 74−81.

5. Fedchenko I. A., Solovcova A. S., Luk'yanov A. N. Osnovnye tendencii razvitiya rynka biotopliva v mire i  Rossii za period 2000–2012 gody [Main trends in the development of the biofuel market in the world and  Russia for the period 2000-2012]: analiticheskij otchet OAO "Korporacii "Razvitie", g. Belgorod. URL:

6. Bashurov B. P., Chebanov V. S. Ocenka funkcional'noj nadezhnosti elementov toplivnoj sistemy sudovyh  dizelej v usloviyah ekspluatacii [Evaluation of functional reliability of elements of the fuel system of ship  diesel engines in operation conditions] // Dvigatelestroenie. 2010. № 1. pp. 34–36.

7. Kompleksnaya programma razvitiya biotekhnologij v Rossijskoj Federacii na period do 2020 goda  № VP-P8-2322 (Programma "BIO-2020", utverzhdena Predsedatelem Pravitel'stva Rossijskoj Federacii  V. V. Putinym 24 aprelya 2012 goda za № 1853p-P8. URL: biotehnologij-v-r/.

8. Dorzheev A. A., Kajzer O. A. Ekologichnost' dizelej pri ispol'zovanii biotopliva na osnove rapsovogo masla [Environmental friendliness of diesel engines when using biofuels based on rapeseed oil] // V sb.:  Problemy sovremennoj agrarnoj nauki: materialy mezhdunarodnoj zaochnoj nauchnoj konferencii.  2017. pp. 37−39.

9. Pat. 2471186 Rossijskaya Federaciya (51) MPK G 01 N 33/22 (2006.01). Ustrojstvo operativnogo  kontrolya kachestva biotopliva / Varnakov Valerij Valentinovich (RU), Varnakov Dmitrij Valer'evich  (RU), Platonov Aleksandr Viktorovich (RU). Zayavitel' i patentoobladatel' FGBOU VPO "UGSKHA".  № 2011139934/15 ; zayavl. 30.09.2011 ; opubl. 27.12.2012. Byul. № 36.

10. Pat. 147779 Rossijskaya Federaciya (51) MPK G 01 N 27/74 (2006.01). Ustrojstvo kontrolya  nizkotemperaturnyh svojstv dizel'nyh i biodizel'nyh topliv s sistemoj podogreva / Varnakov  Valerij Valentinovich (RU), Varnakov Dmitrij Valer'evich (RU), Platonov Aleksandr Viktorovich  (RU), Varnakova Ekaterina Alekseevna (RU). Zayavitel' i patentoobladatel' FGBOU VPO "UGSKHA".  № 2014129446/28 ; zayavl. 16.07.2014 ; opubl. 20.11.2014. Byul. № 32.

11. Varnakov V. V., Varnakov D. V., Platonov A. V. Sposob i sistema ocenki stabil'nosti kachestva biotopliva  dlya dizel'nyh dvigatelej [Method and system for assessing the stability of biofuel quality for diesel  engines] // Mezhdunarodnyj nauchnyj zhurnal. 2013. № 3. pp. 95–101.

12. Dale B., Huber D. The Fuel of the Future Is Grassoline. Ssientifis Amerisa. 2009. № 9. pp. 26−33.

13. Senthil K. M., Ramesh A., Nagalingam B. Experimental investigations on a jatropha oil methanol  dual fuel engine. 2001. SAE Teshnisal Paper Series. 0153: pp. 1−7. DOI: 10.4271 / 2001-01-0153. URL:

14. Izmajlov A. Yu., Didmanidze O. N., Mityagin G. E., Karev A. M. Resursosberezhenie na  avtomobil'nom transporte [Resource saving on automobile transport]. M. : OOO "UMC "Triada", 2016.

15.Varnakov D. V., Varnakov V. V., Varnakova E. A. Rezul'taty issledovanij nizkotemperaturnyh svojstv  i cetanovogo chisla biodizel'nogo topliva [Results of research on low-temperature properties and cetane  number of biodiesel] // Vestnik Ul'yanovskoj gosudarstvennoj sel'skohozyajstvennoj akademii. 2016.  № 2 (34). pp. 168−173.





DOI: 10.34286/1995-4646-2020-73-4-63-72

УДК 629.33-027.32/.33


GRIGORIY E. MITYAGIN, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. A lot of attention is paid to the prospects of industrial vehicle recycling in the Russian  Federation, but to date this has not led to any progress in the formation of a network of recycling  enterprises. This is due not only to the lack of legislative, regulatory and methodological support  for approaches to the formation of the network, but also to the lack of a regulatory framework  for technologies for recycling complete cars and their elements. Based on the analysis of design  factors that characterize the controllability, accessibility, ease of removal, interchangeability,  unification and transportability of the recycling facility, methods were identified that allow developing approaches to the organization and technological support of recycling processes  for both complete objects and their components. Analytical, graphoanalytical, experimental computational, and complex methods should be considered as methods that allow determining  the potential labor intensity of disposal and establishing the most rational technology for  recycling an object. These methods are characterized by different levels of applicability in the  current conditions of recycling enterprises, this is primarily due to the limited data on rational  methods of disposal and the limited criteria selected for evaluating this level. The article analyzes  the methods and selects the most rational ones for today's conditions, which allow creating  economically justified technologies for car recycling, which will allow determining the potential  labor intensity of disposal of decommissioned equipment and the required resources for the  formation of the production and technical base of recycling enterprises.

Key words: decommissioned car, car recycling, recycling technology, recycling processability  of the car, recycling suitability, level of utilization, production and technical base of recycling  enterprises.


1. Mityagin G. E. Faktory, opredelyayushchie utilizacionnuyu tekhnologichnost' avtomobilya [Factors that  determine the utilization processability of the car] // V sb.: Chteniya akademika V. N. Boltinskogo:  Sbornik trudov mezhdunarodnoj nauchno-prakticheskoj konferencii. M. : OOO "Megapolis", 2020.  pp. 131−139.

2. Park legkih kommercheskih avtomobilej na 1 yanvarya 2020 goda. URL: infographics/43400/.

3. Rossijskij park gruzovyh avtomobilej: pokazateli na 1 yanvarya 2020 goda. URL: http://www.

4. Struktura parka Rossijskoj Federacii i Moskvy po ekologicheskim klassam. URL: http://www.

5. Aldoshin N. V., Mityagin G. E., Kuldoshina V. V., Dzhabrailov L. M. Vybyvshaya iz ekspluatacii  tekhnika – istochnik vtorichnyh resursov [Retired equipment – a source of secondary resources] // Tekhnika  i oborudovanie dlya sela. 2008. № 5. pp. 42−43.

6. Mityagin G. E., Kuldoshina V. V. Material'nyj sostav vybyvshego iz ekspluatacii avtomobilya [Material  composition of a retired car] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2007. № 4. pp. 72−75.

7. Aldoshin N. V., Ivlev A. A., Leskonog Yu. A., Lylin N. A. Utilizaciya tekhniki v sisteme APK [Utilization  of equipment in the agro-industrial complex system]: monografiya / Pod red. N. V. Aldoshina. M. :  OOO "UMC "Triada", 2014. 222 p.

8. GOST R 52107−2003 Resursosberezhenie. Klassifikaciya i opredelenie pokazatelej (s Izmeneniem  № 1). URL:

9. GOST 30167−2014 Resursosberezhenie. Poryadok ustanovleniya pokazatelej resursosberezheniya v  dokumentacii na produkciyu. URL:

10. Alekseev V. E., Zaharova D. V. Teoriya grafov [Graph theory]: uchebnoe posobie. Nizhnii Novgorod :  Nizhegorodskii gosuniversitet, 2017. 119 p.

11. Rukovodstvo po ekspluatacii i remontu avtomobilej VAZ-2108/2109/21099 i ih modifikacij s karbyuratornymi  i inzhektornymi dvigatelyami [Manual for operation and repair of cars VAZ-2108/2109/21099 and their  modifications with carburetor and injection engines]. M. : Tretij Rim, 2010. 288 p.

12. GOST 23660−79 Sistema tekhnicheskogo obsluzhivaniya i remonta tekhniki. Obespechenie  remontoprigodnosti pri razrabotke izdelij. URL:

13. Genkin B. M. Organizaciya, normirovanie i oplata truda na promyshlennyh predpriyatiyah [Organization,  rationing and payment of labor at industrial enterprises]: uchebnik dlya vuzov. M. : NORMA, 2003. 400 p.

14. Kravchenko I. N., Aldoshin N. V., Leskonog Yu. A., Shamarin Yu. A. Metodika obosnovaniya sistemy  pokazatelej utiliziruemosti tekhnicheskih sredstv sel'skohozyajstvennogo proizvodstva [Method of justification  of a system of indicators of utilizaremos technical means of agricultural production] // Tekhnika i  oborudovanie dlya sela. 2017. № 3. pp. 32−36.

15. Leskonog Yu. A. Obosnovanie sistemy pokazatelej utilizacii sel'skohozyajstvennoj tekhniki [Justification of  the system of indicators of utilization of agricultural machinery]: avtoref. dis. … kand. tekhn. nauk :  05.20.03 / Leskonog Yurij Aleksandrovich. M. : FGBOU VO RGAU-MSKHA imeni K. A. Timiryazeva,  2017. 19 p.

16. Aldoshin N. V. Kontrol' kachestva izdelij vybyvshej iz ekspluatacii tekhniki [Quality control of products of  equipment that has been retired from operation] // Tekhnika v sel'skom hozyajstve. 2010. № 4. pp. 30−33.

17. Aldoshin N. V. Vybrakovka uzlov i detalej utiliziruemoj tekhniki [Rejection of nodes and parts of  recycled equipment] // Dostizheniya nauki i tekhniki v APK. 2010. № 8. pp. 69−71.





DOI: 10.34286/1995-4646-2020-73-4-73-80

УДК 004.3:63:631.6


IRINA F. YURCHENKO, Advanced Doctor in Engineering Sciences

Associate Professor All-Russian Research Institute for Hydraulic Engineering and Land Reclamation, Russian Federation, Moscow



Abstract. The scale and success of measures to create, implement and use innovative digital  methods of "smart" agriculture in the practice of everyday economic activity is due to the success  of their operation in agricultural production that meets the requirements of environmental  and economic sustainability of the domestic and foreign agro-industrial complex. Changes  in methods and methods for creating and using automated production process management  systems (APCS) and General approaches to managing enterprises and organizations (APCS)  currently determine the increased relevance of research to ensure the success of automating  the regulation of the reclamation regime of agroecosystems, focused on the evolving regime  of irrigated land. Research on the strategic development of domestic innovations, conceptual  provisions of the country's industrial evolution, forecasts of scientific and technical development  of the Russian agro – industrial complex, data from Russian priority production platforms,  scientific publications on the problems of innovative development of agricultural production,  digitalization of the economy, and the work of specialists OF the A. N. Kostyakov VNIIGIM were  used as the substantiating material for the results. The purpose of this work is to form priority  areas in the field of "digital irrigation", providing the creation of innovative management  systems for irrigated agricultural production. The analysis of the effectiveness of using digital  methods that regulate the operations of irrigated crop production has shown a significant gap  between domestic products and the best foreign samples and the need to improve them based  on the development of cloud products, the widespread use of large data array technologies, the  creation of software complexes with elements of artificial intelligence, the use of neural networks,  and so on. The requirements for the functional structure and architecture of modern automated  production process management systems focused on monitoring and accounting for the  reclamation state of agroecosystems, intelligent data processing, the formation of management  solutions and their implementation automatically without human intervention are defined.

Key words: digital systems, agricultural production, irrigation, crop production, requirements,  functions, structure, architecture.


1. Novye tekhnologii proektirovaniya, obosnovaniya stroitel'stva, ekspluatacii i upravleniya meliorativnymi  sistemami [New technologies for designing, justifying construction, operation and management of  reclamation systems] / Pod red. doktora tekhn. nauk, prof. L. V. Kirejchevoj. M., 2010. 240 p.

2. Ekologo-ekonomicheskaya effektivnost' kompleksnyh melioracij Barabinskoj nizmennosti [Ecological and  economic efficiency of complex meliorations of the Barabinsk lowland] / pod red. L. V. Kirejchevoj. M. :  VNIIA, 2009. 312 p.

3. Shabanov V. V.Avtomatizaciya kompleksnogo regulirovaniya faktorov zhizni rastenij [Automation of  complex regulation of plant life factors] // Gidrotekhnika i melioraciya. 1982. № 1. pp. 60−75.

4. Nauchnye osnovy sozdaniya i upravleniya meliorativnymi sistemami v Rossii [Scientific bases of creation  and management of meliorative systems in Russia] / Pod red. L. V. Kirejchevoj. M. : FGBNU "VNII  agrohimii", 2017. 296 p

5. Yurchenko I. F. Naukoemkie informacionnye tekhnologii v meliorativnoj deyatel'nosti. Upravlenie  ekonomicheskimi sistemami [Science-Intensive information technologies in meliorative activity.  Management of economic systems] // Elektronnyj nauchnyj zhurnal. 2005. № 3. pp. 9−13.

6. Yurchenko I. F., Nosov A. K. O kriteriyah i metodah kontrolya bezopasnosti gidrotekhnicheskih sooruzhenij  meliorativnogo vodohozyajstvennogo kompleksa [On criteria and methods of safety control of hydraulic  structures of reclamation water management complex] // Puti povysheniya effektivnosti oroshaemogo  zemledeliya. 2014. Vyp. 53. pp. 158−165.

7. Volosuhin Yа. V., Bandurin M. A. Provedenie ekspluatacionnogo monitoringa s primeneniem  nerazrushayushchih metodov kontrolya i avtomatizaciya modelirovaniya tekhnicheskogo sostoyaniya  gidrotekhnicheskih sooruzhenij [Conducting operational monitoring using non-destructive control methods and automation of modeling the technical condition of hydraulic structures.] // Monitoring.  Nauka i bezopasnost'. 2011. № 3. pp. 88−93.

8. Volosuhin Ya. V., Bandurin M. A.Primenenie nerazrushayushchih metodov pri provedenii  ekspluatacionnogo monitoringa tekhnicheskogo sostoyaniya kanalov obvodnitel'no-orositel'nyh sistem [Application of non-destructive methods during operational monitoring of the technical condition of channels of irrigation systems] // Monitoring. Nauka i bezopasnost'. 2012. № 2. pp. 102−106.

9. Volosuhin Ya. V., Bandurin M. A. Voprosy modelirovaniya tekhnicheskogo sostoyaniya vodoprovodyashchih  kanalov pri provedenii ekspluatacionnogo monitoringa [Issues of modeling the technical condition of water  supply channels during operational] // Monitoring. Nauka i bezopasnost'. 2012. № 1. pp. 70−74.

10. Kanyuk G. I., Babenko I. A., Kozlova M. L., Suk I. V., Mezerya A. Yu. Ob obshchih nauchnyh podhodah  k sozdaniyu unificirovannyh precizionnyh energosberegayushchih ASU TP [On General scientific approaches  to creating unified precision energy-saving automated process Control Systems] // Energosberezhenie.  Energetika. Energoaudit. 2016. № 2 (145). pp. 20−32.

11. Plan meropriyatij ("dorozhnaya karta") "Razvitie tekhnologij v oblasti Interneta veshchej". URL:

12. Yurchenko I. F., Trunin V. V. Sistema podderzhki prinyatiya reshenij po vodoraspredeleniyu na baze Veb tekhnologij [Web-based decision support system for water distribution] // Nauchnyj zhurnal Rossijskogo  NII Problem melioracii. 2014. № 2(14). pp. 87−97.

13. Savichev O. G. Ekspluataciya i monitoring sistem i sooruzhenij prirodoobustrojstva i vodopol'zovaniya [Operation and monitoring of systems and structures of nature management and water use]. Tomsk :  Tomskij politekhnicheskij universitet, 2014. 109 p.

14. Yurchenko I. F., Nosov A. K. Effektivnost' organizacionno-pravovyh form ispol'zovaniya melioriruemyh  zemel' [Efficiency of organizational and legal forms of use of reclaimed land] // Vestnik Rossijskoj  akademii sel'skohozyajstvennyh nauk. 2012. № 6. pp. 10−12.

15. Balakaj G. T., Yurchenko I. F., Lentyaeva E. A., Yalalova G. H. Bezopasnost' beskhozyajnyh  gidrotekhnicheskih sooruzhenij [Safety of ownerless hydraulic structures]. Germaniya : LAP LAMBERT,  2016. 85 p.

16. Yurchenko I. F. Information support for decision making on dispatching control of water  distribution in irrigation // Journal of Physics: Conference Series. 2018. T. 1015. pp. 042063.

17.Yusupbekov N., Adilov F., Ergashev F. Development and Improvement of Systems of Automation  and Management of Technological Processes and Manufactures // Journal of Automation, Mobile  Robotics & Intelligent Systems. 2017. V. 11. № 3. pp. 53−57.

18. Lindsay Corporation. Plug & Play Add-Ons. URL:

19. John Deer eField Connect. URL: technology/field-and-water-anagement.

20. Acromag. SM-Autonomous Irrigation Control. URL: autonomous-irrigation-control

21. Save and Grow. A policymaker's guide to the sustainable intensification of smallholder crop  production. Rome : FAO, 2011. 112 pp.

22. Tevatronic. Autonomous Irrigation. URL:





DOI: 10.34286/1995-4646-2020-73-4-81-86

УДК 502.51(282):631.6


LUDMILA V. KIREYCHEVA, Advanced Doctor in Engineering Sciences, Professor

VALERIY M. YASHIN, Ph. D. of Engineering Sciences, Senior Research Officer

All-Russian Research Institute for Hydraulic Engineering and Land Reclamation, Russian Federation, Moscow



Abstract. The paper presents a methodological approach and results of assessments of the impact of reclaimed land on diffuse pollution of water bodies in the Volga river basin. The upper Volga basin is characterized by the development of drainage reclamation of agricultural land, and irrigation reclamation is widely used in the Middle and Lower Volga. Calculations based on the use of meteorological data and empirical dependencies on the formation of drainage runoff and removal of nutrients from drained agricultural lands of the Upper Volga showed that in the average long-term section, 1564.44 million m3 of drainage water can enter water bodies. The average annual removal of nitrogen is 4.67 thousand tons, phosphorus-0.16 thousand tons, potassium-3.25 thousand tons. An estimated calculation of the volume of drainage runoff and salt removal from irrigated lands to water bodies of the Middle and Lower Volga basin showed that the volume of drainage runoff in modern conditions is approximately 225.9 million m3 , which is 22 % of the water intake; in the future, the volume of drainage water may increase to 557.12 million m3 ; the volume of mineral salt removal is determined at 430.16 thousand tons per year.

Key words: diffusion pollution, water body, irrigation, drainage, drainage runoff, surface runoff, biogenic substances.


1. Kirejcheva L. V. Ekologicheskie osnovy kompleksnyh melioracij agrolandshaftov [Ecological bases of complex reclamation of agricultural landscapes] / V sb. trudov Mezhdunarodnoy nauchnoy konferenciyu (Kostyakovskie chteniya) "Ekologicheskie problemy melioracii". Moskva, 27−28 marta 2002 goda. pp. 5−9.

2. Kirejcheva L. V. Koncepciya sozdaniya ustojchivyh meliorirovannyh agrolandshaftov [The concept of crea- ting sustainable reclaimed agricultural landscapes] // Vestnik Rossijskoj akademii sel'skohozyajstven- nyh nauk. 1997. No 5. pp. 51−55.

3. Yashin V. M. Formirovanie kachestva drenazhnogo stoka na Yahromskoj pojme [Formation of the quality of drainage runoff on the Yakhrom floodplain] // Melioraciya i vodnoe hozyajstvo. 2017. No 6. pp. 21−26.

4. Kirejcheva L. V., Yashin V. M. Ocenka potencial'nogo ob"ema drenazhnogo stoka s oroshaemyh zemel' bassejna Volgi [Estimation of the potential volume of drainage runoff from irrigated lands of the Volga basin] // Nauchnye podhody i tekhnicheskie resheniya melioracii zemel', vodoobespecheniya i vodopol'zovaniya v APK: Sb. nauchnyh trudov. M. , 2019. pp. 150−160.

5. Maslov B. S., Panov E. E., Nikitin I. D. Meliorativnoe rajonirovanie nechernozemnoj zony RSFSR [Meliorative zoning of the non-Chernozem zone of the RSFSR] // Gidrotekhnika i melioraciya. 1977. No 4. pp. 73−80.

6. Shkinkis C. N. Gidrologicheskoe dejstvie drenazha [Hydrological effect of drainage]. L. : Gidrometeo- izdat, 1981. 311 p.

7. Tomson H, Honnolajnen G. O vynose pitatel'nyh veshchestv drenazhnym stokom iz tyazhelyh dernovo- gleevyh pochv pri vozdelyvanii ozimoj pshenicy [On the removal of nutrients by drainage runoff from heavy sod-gley soils in the cultivation of winter wheat] // Sbornik nauchnyh trudov EstNII zemledeliya i melioracii. Tallin. No 29. 1973. 207 p.

8. VTR-P-30–81. Rukovodstvo po opredeleniyu raschetnyh koncentracij mineral'nyh, organicheskih veshchestv i pesticidov v drenazhnom i poverhnostnom stoke s melioriruemyh zemel' [Guidelines for determining the calculated concentrations of mineral, organic substances and pesticides in drainage and surface runoff from reclaimed land]. M. : Ministerstvo melioracii i vodnogo hozyajstva, 1981. 42 p.

9. Kireicheva L. V., Lentyaeva E. A. Estimation of diffuse runoff coming into the upper Volga basin with drainage water containing biogenic substances // Journal of mechanics of continua and mathematical sciences, Special Issue No. 10, June, 2020. pp. 552−568.





DOI: 10.34286/1995-4646-2020-73-4-87-93

УДК 633.72.004.12


REMZI N. DIDMANIDZE, Ph. D. of Economic Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The current state of production and consumption of black baich tea is considered. The factors affecting the quality of this product are considered, as well as the production and consumption of tea per capita are analyzed. It is established that the possibilities for sustainable tea production in the Krasnodar region are not limited, since there are prerequisites for favorable soil and climatic conditions for this crop. The article notes the production of high-quality black baich tea as the main final product of production, which is possible only from raw materials of the required quality. This raw material is a tea leaf, the quality of which is determined by the calendar dates, the frequency of collection and the corresponding number of tender leaves on flushes. High – quality tea can be obtained mainly from two-and three-leaf flushes. It is known that the average annual consumption of tea per capita in different countries varies in a wide range from 540 to 3450 g. Since tea plantations develop successfully only in tropical and subtropical climates, tea production is limited to a limited number of countries. In Russia, tea plantations are located only in the Krasnodar territory. In order to take advantage of the current favorable conditions for the restoration and further production of tea in the Krasnodar territory, it is necessary to take appropriate in-depth scientific and subsequent production measures.

Key words: tea, tea quality, tea production, tea selection, soil and climate conditions, agrotechnical measures.


1. Didmanidze O. N, Didmanidze R. N. Povyshenie effektivnosti processov proizvodstva i realizacii chaya [Improving the efficiency of tea production and Sales processes]. M. : OOO "UMC "TRIADA", 2003. 120 p.

2. Didmanidze O. N. Teoreticheskie osnovy resursosberezheniya v chaevodstve [Theoretical foundations of resource conservation in tea growing]. M. : Kolos, 1997. 227 p.

3. Klepach A. N., Rozanova N. M., Rudakova I. E. Sovremennyj rynok: priroda i razvitie [Modern market: nature and development] / Pod red. E. P. Dunaeva, I. E. Rudakovoj. M. : MGU, 1992. 133 p.

4. Gusakova D. A. Tendencii razvitiya rynka chaya v Rossii i v mire [Trends in the development of the tea market in Russia and in the world] // Luchshaya studencheskaya stat'ya 2016: sbornik statej II Mezhdunarodnogo nauchno-prakticheskogo konkursa. Penza, 2016. pp. 76–82.

5. Informacionnoe agentstvo Interfaks – Ukraina. URL: html

6. Ministerstvo ekonomicheskogo razvitiya RF. URL:

7. Biang. URL:,8-mln-tonn-v-2018-godu.html.












DOI: 10.34286/1995-4646-2020-73-4-94-99

УДК (631.371:621.31)-192


TAMARA B. LESHCHINSKAYA, Advanced Doctor in Engineering Sciences, Professor VITALIY V. TISHKOV, Postgraduate

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

ALEXEY A. GRUBA, Master’s Degree

National Research University Moscow Power Engineering Institute, Russian Federation, Moscow



Abstract. The analysis of the level of reliability and ways to improve it was carried out, reliability indicators were selected based on the methods of power grid organizations, and a mathematical model was formed that will allow the most qualitative determination of the volume of maintenance and repair work (Maintenance and Repair). Equipment failures that occur cause great economic losses from under-supply of electric energy and damage to consumers. The most "worn-out" electric networks with a voltage of 6-10 kV are most susceptible to failures. The considered methods of increasing reliability in the process of operation of rural distribution electric networks have shown that the most important thing is to increase the reliability of each element of the electric network during operation. The existing system of scheduled preventive repairs (PPR) does not take into account the actual state of the elements during repairs, but only focuses on the time of commissioning. The selected reliability indicators - indexes of importance, unreliability, and technical condition – allow us to more fully assess the real level of reliability of a single element of the electrical network based on diagnostic and analytical work. The formulated mathematical model will allow electric grid organizations to plan work on Maintenance and Repair, which will lead to the repair of elements of electric networks that need it, thereby most effectively and efficiently apply the PPR system. The results of the study make it possible to use a mathematical model in creating a neural network for medium-and short-term forecasting of Maintenance and Repair operations, which will increase the level of reliability of electric networks and reduce economic losses.

Key words: electrical network, failures, reliability indicators, maintenance and repair


1. Yablokov A. S. Opredelenie vida i mesta povrezhdeniya v sel'skih elektricheskih setyah 6-35 kV po navedennym napryazheniyam na antennah [Determination of the type and location of damage in rural electric networks of 6-35 kV based on induced voltages on antennas]: avtoref. dis. … kand. tekhn. nauk : 05.20.02 / Yablokov Aleksej Sergeevich, Michurinsk, 2018. 23 p.

2. Leshchinskaya T. B., Naumov I. V. Elektrosnabzhenie sel'skogo hozyajstva [Power supply of agriculture]: uchebnik. M. : BIBKOM, TRASLOG, 2015. 656 p.

3. Safonov V. I., Lonzinger P. V. Nadezhnost' sistem elektrosnabzheniya [Reliability of power supply systems]: Uchebnoe posobie. Chelyabinsk : Izdatel'skij centr YUUrGU, 2014. 90 p.

4. Prikaz Ministerstva energetiki RF ot 25 oktyabrya 2017 g. №1013 "Ob utverzhdenii trebovanij k obespecheniyu nadezhnosti elektroenergeticheskih sistem, nadezhnosti i bezopasnosti ob"ektov elektroenergetiki i energoprinimayushchih ustanovok" "Pravila organizacii tekhnicheskogo obsluzhivaniya i remonta ob"ektov elektroenergetiki". URL:

5. Metodika ocenki pokazatelej nadezhnosti PAO "FSK EES" [Methodology for assessing reliability indicators of PJSC FGC UES]. 2011. 86 p.





DOI: 10.34286/1995-4646-2020-73-4-100-107

УДК 621.3.02



National Research University Moscow Power Engineering Institute, Russian Federation, Smolensk



Abstract. Investigation and calculation of emergency processes occurring in electric power systems is an integral element of system design and operation. All changes related to its development and improvement of the equipment used require a detailed analysis, assessment of changes in operating modes, and development of recommendations for managing the scheme in normal and emergency modes. The calculation of short-circuit currents is most often used in the analysis of emergency modes. An important point in this situation is to determine the possibility of applying certain calculation methods related to the characteristics of the equipment of the electric network and electricity consumers. The most effective methods are the methods of similarity theory. Analysis of the physical and mathematical similarity of objects allows you to apply fairly simple and effective practical methods for calculating the parameters of emergency processes, without resorting to fairly complex mathematical calculations. One of these practical techniques is the method of relative units and the method of typical curves and the method of rectified characteristics constructed using it. But this approach is not possible in all cases. Individual elements of the electrical network, such as direct current inserts, high-power consumers with frequency conversion of electricity, which are now being used, do not always meet the requirements of physical similarity, which can lead to significant errors in calculations. The result of the research is to determine the possibilities of using various calculation methods for analyzing emergency processes.

Key words: short-circuit currents, theory of similarity and modeling, system of relative units, physical and mathematical similarity.


1. Venikov V. A. Teoriya podobiya i modelirovaniya primenitel'no k zadacham elektroenergetiki [Theory of similarity and modeling in relation to the problems of electric power engineering]. M. : Vysshaya shkola, 1966. 487 p.

2. Venikov V. A. Teoriya podobiya i modelirovaniya [Theory of similarity and modeling]. M. : Vysshaya shkola, 1976. 480 p.

3. Ul'yanov S. A. Elektromagnitnye perekhodnye processy v elektricheskih sistemah [Electromagnetic transients in electrical systems]. M. : Leningrad : Energiya, 1964. 704 p.

4. Ul'yanov S. A. Elektromagnitnye perekhodnye processy v elektricheskih sistemah [Electromagnetic transients in electrical systems]. M. : Energiya, 1970. 520 p.

5. Perekhodnye processy v elektroenergeticheskih sistemah [Transitive processes in electric power systems: textbook for higher education institutions]: uchebnik dlya vuzov / I. P. Kryuchkov, V. A. Starshinov i dr. M. : Izdatel'skij dom MEI, 2009. 416 p.

6. Karasev D. D. Sistemy tenzornyh uravnenij elektricheskih setej i elektromagnitnyh polej [Systems of tensor
equations of electric networks and electromagnetic fields]. M. : Energoatomizdat, 2010. 332 p.

7. Osnovy teorii podobiya [The foundations of similarity theory]: konspekt lekcij / Vladimirskij gosudarstvennyj universitet ; sost. K. I. Zuev. Vladimir : VGU, 2011. 51 p.

8. Raschet tokov korotkih zamykanij v energosistemah [Calculation of short-circuit currents in power systems]: uchebnoe posobie / S. A. Eroshenko [i dr.]. Ekaterinburg : Izd-vo Ural. un-ta, 2019. 104 p.

9. Rukovodyashchie ukazaniya po raschetu tokov korotkogo zamykaniya i vyboru elektrooborudo- vaniya RD 153-34.0-20.527–98 [Guidelines for calculating short-circuit currents and selecting electrical equipment RD 153-34.0-20.527–98]. M. : Izdatel'stvo NC "ENAS", 2002. URL:

10. GOST R 52735–2007. Korotkie zamykaniya v elektroustanovkah. Metody rascheta v elektroustanovkah peremennogo toka napryazheniem svyshe 1 kV [GOST R 52735-2007. Short circuits in electrical installations. Calculation methods in AC electrical installations with voltage over 1 kV]. M. : Standartinform, 2008. 36 p.