DOI: 10.34286/1995-4646-2020-74-5-7-24

УДК (502.51:556.55):620.9-047.58


DMITRIY N. KARAMOV, Ph. D. of Engineering Sciences, Senior Research Officer

ALEXEI V. EDELEV, Ph.D. of Engineering Sciences, Senior Research Officer Federal State-Funded Institution of Science “Melentiev Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences”, Russian Federation, Irkutsk

ALEXANDER G. FEOKTISTOV, Ph. D. of Engineering Sciences, Associate Professor, Head of the Laboratory Federal State-Funded Institution of Science “Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences”, Russian Federation, Irkutsk




Abstract. In the last decade, we can see an increase of anthropogenic load on the Baikal natural territory. The number of recreation infrastructure objects (tourist centers, camping sites and campgrounds) is growing. This leads to an increase in electricity demand, which peaks occur during the summer. Status of the protected territory often does not allow the proper development of the energy supply of the aforementioned objects. These objects widely use portable autonomous energy sources. Among them are portable diesel and gasoline generators. Such sources greatly pollute the atmosphere with combustion products and the soil by lube materials. In this regard, a study on using alternative environmentally friendly energy sources becomes relevant. For the territory under consideration, these are primarily solar and wind energy sources. The aim of the study is developing and applying an approach for modeling energy supply of objects located in the Baikal natural territory on the basis of photovoltaic systems and wind power plants using an artificial neural network to predict the electrical load needed for consumers. In contrast to the known approaches to determining the required energy demands, the proposed one evaluates the electrical load related to the operation of the objects in a new way. It provides applying the backpropagation neural network, the learning of which is based on the analysis of long-term meteorological series, a typical meteorological year, and real energy consumption data. The approach was applied during modeling children's tent camp and tourist center of the Baikal natural territory. These objects differ in their infrastructure and electricity demand. It is shown that renewable energy sources can cover over 80% of the energy demand of each object. We demonstrated that photovoltaic systems can be successfully used in conjunction with wind power plants and accumulators for the electricity supply of the objects in certain regions. They minimize the operation of diesel generators. The obtained modeling results show that the proposed approach allows describing the operating modes of energy facilities using renewable energy sources with an acceptable error. Applying this approach in practice provides rational combing environmentally friendly energy sources with traditional ones. In addition, the reduction of atmospheric pollution is achieved.

Key words: Baikal, natural territory, energy supply, infrastructure objects, renewable energy sources, meteorological series, analysis, modeling.




1. Celik A. N. Techno-economic analysis of autonomous PV – wind hybrid enegy systems using different sizing methods // Energy Conversion and Management. 2003. Vol. 44. No. 12. рр. 1951−1968.

2. Bajpai P., Dash V. Hybrid renewable energy systems for power generation in stand-alone applications: a review // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. No. 5. рр. 2926−2939.

3. Mohammed Y. S., Mustafa M. W., Bashir N. Hybrid renewable energy systems for off-grid electric power: review of substantial issues // Renewable and Sustainable Energy Reviews. 2014. Vol. 35. рр. 527−539.

4. Hiendro A., Kurnianto R., Rajagukguk M., Simanjuntak Y. M. Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia // Energy. 2013. Vol. 59. рр. 652−657.

5. Bahramara S., Moghaddam M. P., Haghifam M. R. Optimal planning of hybrid renewable energy systems using HOMER: a review // Renewable and Sustainable Energy Reviews. 2016. Vol. 62. рр. 609−620.

6. Ohunakin O. S. Assessment of wind energy resources for electricity generation using WECS in North-Central region, Nigeria // Renewable and Sustainable Energy Reviews. 2011. Vol. 15. No. 4. рр. 1968−1976.

7. Fantidis J. G., Bandekas D. V., Potolias C., Vordos N. Cost of PV electricity – Case study of Greece // Solar energy, 2013. Vol. 91. рр. 120−130.

8. Giannoulis E. D., Haralambopoulos D. A. Distributed generation in an isolated grid: methodology of case study for Lesvos-Greece // Applied Energy. 2011. Vol. 88. No. 7. рр. 2530−2540.

9. Lund H. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply // Renewable Energy. 2006. Vol. 31. No. 4. рр. 503–515.Lund H. Large-scale integration of optimal combinations of PV, wind and wave power into theelectricity supply // Renewable Energy. 2006. Vol. 31. No. 4. рр. 503–515.

10. Zoulias E. I., Lymberopoulos N. Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy based stand-alone power systems // Renewable Energy. 2007. Vol. 32. No. 4. рр. 680−696.

11. Ismail M. S., Moghavvemi M., Mahlia T. M. I. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate // Energy Conversion and Management. 2013. Vol. 69. рр. 163−173.

12. Schiffer J., Sauer D. U., Bindner H., Cronin T., Lundsager P., Kaiser R. Mode prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems // Journal of Power Sources. 2007. Vol. 168. No. 1. рр. 66−78.

13. Akikur R. K., Saidur R., Ping H. W., Ullah K. R. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: a review // Renewable and Sustainable Energy Reviews. 2013. Vol. 27. рр. 738−752.

14. Mandelli S., Brivio C., Colombo E., Merlo M. Effect of load profile uncertainty on the optimum sizing of off-grid PV systems for rural electrification // Sustainable Energy Technologies and Assessments. 2016. Vol. 18. рр. 34−47.

15. Mandelli S., Merlo M., Colombo E. Novel procedure to formulate load profiles for off-grid rural areas // Energy for Sustainable Development. 2016. Vol. 31. рр. 130–142.

16. Karamov D. N. Formirovanie iskhodnyh meteorologicheckih massivov s ispol'zovaniem mnogoletnih ryadov fm 12 Synop i metar v sistemnyh energeticheskih issledovaniyah [Formation of initial meteorological arrays using long-term series fm 12 Synop and metar in system energy research] // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. T. 329. No 1. pp. 69−88.

17. Karamov D. N. Matematicheskoe modelirovanie solnechnoj radiacii s ispol'zovaniem mnogoletnih meteorologicheskih ryadov, nahodyashchihsya v otkrytom dostupe [Mathematical modeling of solar radiation using long-term meteorological series that are in open access] // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2017. T. 328. No 6. pp. 28−37.

18. Karamov D. N. Integraciya processa kategorizacii elektrohimicheskih nakopitelej energii v zadachu optimizacii sostava oborudovaniya avtonomnyh energeticheskih kompleksov, ispol'zuyushchih vozobnovlyaemye istochniki energii [Integration of the process of categorization of electrochemical energy storage in the problem of optimizing the equipment composition of Autonomous energy complexes using renewable energy sources] // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2019. T. 330. No 5. pp. 113−130.

19. Karamov D. N., Naumov I. V. Modelirovanie solnechnoj elektrostancii s uchetom izmeneniya parametrov okruzhayushchej sredy [Modeling of a solar power plant taking into account changes in environmental parameters] // Elektricheskie stancii. 2020. No 6. pp. 21−28.

20. Karamov D. N., Naumov I. V., Perzhabinskij S. M. Matematicheskoe modelirovanie otkazov elementov elektricheskoj seti (10 kV) avtonomnyh energeticheskih sistem s vozobnovlyaemoj raspredelennoj generaciej [Mathematical modeling of failures of elements of the electric network (10 kV) of Autonomous power systems with renewable distributed generation] // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. T. 329. No 7. pp. 116−130.

21. Sidorov D., Muftahov I., Tomin N., Karamov D., Panasetsky D., Dreglea A., Liu F., Foley A. A Dynamic Analysis of Energy Storage with Renewable and Diesel Generation using Volterra Equations // IEEE Transactions on Industrial Informatics. 2019. Vol. 16. No. 5. рр. 3451−3459.






DOI: 10.34286/1995-4646-2020-74-5-25-30

УДК (631.371:621.311):639.3.001.8


VLADIMIR V. SHMIGEL, Advanced Doctor in Engineering Sciences, Professor

ARTEM S. UGLOVSKY, Ph. D. of Engineering Sciences, Associate Professor Yaroslavl State Agricultural Academy, Russian Federation, Yaroslavl



Abstract. Various types of fish biological activity can be used as measuring indicators. However, biological activity is very complex and inconsistent, so the use of fractal geometry is required. The purpose of this article is to evaluate the possibility of using fractal analysis of the swimming trajectory using an electrostatic field on the Danio rerio fish to assess motor activity. The fractal nature of the movement of Danio rerio fish was determined using the method of cell counting using the FracLac module. To do this, we determined the number of intersections of cells of different scales of the Danio rerio trajectories. Based on these data, we built a graph, and if it was linear, we concluded that the movement was fractal. Using the method of cell counting, it was found that the swimming trajectory of the Danio really has a fractal character. Using regression lines, we determined the maximum Hurst index and found that the greatest swimming activity of Danio rerio fish is observed when exposed to an electrostatic field with a voltage of 2.50 kV.

Key words: Danio rerio, electrostatic field, Hurst index, motor activity, fractal dimension.




1. Lukichyova N. A., Kabickaya O. E., Vasil'eva G. Yu., Sychev V. N. Danio rerio v kachestve modeli dlya nauchnogo issledovaniya [Danio rerio as a model for scientific research] // Aviakosmicheskaya i ekologicheskaya medicina. 2018. T. 52. No 4. pp. 17–23. DOI: 10.21687/0233-528X-2018-52-4-17-23.

2. Monte W. The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio*). Institute of Neuro Science, Rep Spiral Edition, Oregon (1994).

3. Kolb M. Aggregation Processes, Fractals in Physics // Works VI of the International Symposium on Fractals in Physics, July 1985, pp. 370−373.

4. Smirnov B. M. Physics of Fractal Clusters // Science. Moscow. 1991. p. 134.

5. Witter T. A., Sandar L. M. Physical Review Letters. 1981. Vol. 47. p. 1400.

6. Fractals J. F. Department of Physics University of Oslo, Oslo, 1990, p. 258.





DOI: 10.34286/1995-4646-2020-74-5-31-36

УДК 338.45



LEONID M. LAZARENKO, Ph. D. of Physico-Mathematical Sciences, Associate Professor

ALEXANDER I. SABLIN, Ph. D. of Physico-Mathematical Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow




Abstract. The problem of synthesis of a multiparameter controller in closed ground systems is an actual and complex problem in combination with finding the transfer function of the control object. The problem is complicated by issues of noise immunity of the controller, related, for example, to the rate of change in the temperature gradient of the walls of the germination chamber or other greenhouse devices. In large-scale systems (industrial greenhouses), approximate estimates of the parameters of regulators are possible based on the simulation method with sequential iteration of the results, since the thermodynamic characteristics of such objects are mostly nonlinear. Symbolic systems such as Sympy-Python, Maple, and others, as shown in this paper, under certain conditions allow us to implement the synthesis of an irrational multiparameter controller with the necessary transfer function, followed by rationalization for implementation in modern controllers. As follows from the developed algorithm for finding the controller function, the procedure for finding the constants of the control transfer function that is consistent with the control object that has various structural and thermal characteristics, in particular, the absolute damping coefficient, the degree of oscillation, and the necessary form of the amplitude-frequency characteristic was solved. An interpolation procedure is developed for finding an equivalent rational function with justification of the interpolation points: agreed poles, interpolation intervals, and selection of object that has various structural and thermal characteristics, in particular, the absolute damping coefficient, the degree of oscillation, and the necessary form of the amplitude-frequency characteristic was solved. An interpolation procedure is developed for finding an equivalent rational function with justification of the interpolation points: agreed poles, interpolation intervals, and selection of interpolation points on the line p = (-x-i/m). The results obtained are the basis for writing equations in finite differences for subsequent software in the used controller.

Key words: control system, irrational transfer function, transfer function rationalization, experimental and theoretical functions of objects, Urkowitz polynomial, Fourier equation.




1. Lazarenko M. L. Primenenie drobnyh proizvodnyh v zakonah upravleniya s cel'yu povysheniya ego kachestva [Application of fractional derivatives in the laws of management in order to improve its quality] // Estestvennye i tekhnicheskie nauki. 2013. No 6. pp. 371.

2. Lazarenko M. L. Metod rascheta parametrov nastrojki regulyatorov s drobnymi proizvodnymi v zakone upravleniya [Method for calculating the settings of regulators with fractional derivatives in the control law] // Estestvennye i tekhnicheskie nauki. 2014. No 1. pp. 249.

3. Lazarenko M. L., Lazarenko L. M. Sistema monitoringa i upravleniya temperaturoj v klimaticheskoj kamere [Temperature monitoring and control System in the climate chamber] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2014. No 5. pp. 67.

4. Rajzner Yu. P. Vvedenie v gidrogazodinamiku i teoriyu udarnyh voln dlya fizikov [Introduction to hydro- gas dynamics and shock wave theory for physicists]. Dolgoprudnyj : Izdatel'skij dom "Intellekt", 2011.  pp. 22−23.

5. Landau L. D., Lifshic E. M. Gidrodinamika [Gidrodinamika]. M. : Glavnaya redakciya fiziko- matematicheskoj literatury, 1986. p. 18, p. 74.

6. Lazarenko M. L. Matematicheskoe modelirovanie processov teploobmena v klimaticheskih kamerah [Mathematical modeling of heat exchange processes in climate chambers] // Mezhdunarodnyj nauchnyj zhurnal. 2013. No 6. pp. 48.

7. Lazarenko M. L., Lazarenko L. M., Sablin A. I. Kornevoj metod nastrojki kontrollerov regulirovaniya temperatury v kamere prorashchivaniya teplichnogo hozyajstvo [Root method controller settings control  the temperature in the germination chamber greenhouse industry] // Mezhdunarodnyj tekhniko- ekonomicheskij zhurnal. 2019. No 3. pp. 42.

8. Pat. 2589163 Rossijskaya Federaciya, MPK A 01 G 9/24. Sposob avtomaticheskogo upravleniya temperaturnym rezhimom teplicy [Method of automatic control of temperature regime of the greenhouse] / Lazarenko M. L., Lazarenko L. M., Sudnik Yu. A; zayavitel' i patentoobladatel' Lazarenko Mihail Leonidovich. No 2014140224/13 ; zayavl. 10.06.2014 ; opubl. 10.07.2016.

9. Lazarenko M. L., Lazarenko L. M. Realizaciya sistemy regulirovaniya temperatury i monitoringa parametrov mikroklimata v klimaticheskoj kamere teplichnogo hozyajstva [Implementation of the system of temperature control and monitoring of microclimate parameters in the climate chamber of a greenhouse] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2018. No 3. pp. 33.

10. Akt o vnedrenii. "Ob"edinennye tekhnologii LTD" General'nyj direktor Beraya I. R. 2015 [Act on implementation. United technologies LTD. General Director Beraya I. R. 2015].






DOI: 10.34286/1995-4646-2020-74-5-37-43

УДК 621.313.333-192:332



Russian Timiryazev State Agrarian University, Russian Federation, Moscow




Abstract. The article is devoted to an experimental analysis of the reliability of an asynchronous motor in the ventilation system of an administrative building of an agro-industrial complex by determining the highest harmonic components of current and voltage from the results of measurements in the distribution network of agricultural consumers. Currently, the electrical load of rural consumers is significantly increasing in areas where agriculture is developing dynamically through the construction of crop production, livestock, poultry, greenhouses and agricultural processing enterprises. The technological processes of enterprises are based on the improvement of equipment, starting from fine electronics to ensuring the quality of the supplied electric energy with high requirements. I would especially like to mention the asynchronous motor, the mass use of which in agro-industrial complexes has a significant weight among consumers of electric energy. Of course, trouble-free operation is achieved not only by the reliability of the equipment itself, but also by the power supply from the distribution network. The paper evaluates the influence of higher current harmonics on the temperature mode of the asynchronous motor installed in the forced ventilation system of the agro-industrial complex. 

Keywords: reliability, non-sinusoidality, higher-order harmonics, quality of electric energy, agricultural equipment, asynchronous electric motor.




1. Gelle B., Gammata V. Vysshie garmoniki v asinhronnyh mashinah [Higher harmonics in asynchronous machines] / Per. s angl.: Pod red. Z. G. Kaganova. M. : Energiya, 1981. 352

2. GOST R ISO 18434-1−2013 Kontrol' sostoyaniya i diagnostika mashin. Termografiya. Chast' 1. Obshchie metody (Pereizdanie) [GOST R ISO 18434-1–2013 condition Monitoring and diagnostics of machines. Thermography. Part 1. General methods (second edition)]. Vved. 2014−09−01. M. : Standartinform, 2019.

3. GOST 32144−2013 Elektricheskaya energiya. Sovmestimost' tekhnicheskih sredstv elektromagnitnaya. Normy kachestva elektricheskoj energii v sistemah elektrosnabzheniya obshchego naznacheniya [GOST 32144–2013 Electric energy. Compatibility of technical means is electromagnetic. Standards of quality of electric energy in General-purpose power supply systems]. Vved. 2014−07−01. M. : Standartinform, 2014.

4. GOST 7217−87 Mashiny elektricheskie vrashchayushchiesya. Dvigateli asinhronnye. Metody ispytanij (s Izmeneniyami No 1, 2) [GOST 7217–87 rotating electric Machines. Asynchronous motors. Test methods (with Changes # 1, 2)]. Vved. 1988−01−01. M. : IPK Izdatel'stvo standartov, 2003.

5. Bol'shakov O. V., Vasil'eva O. A. O proiskhozhdenii i imerenii garmonicheskih iskazhenij v elektricheskih setyah [On the origin and measurement of harmonic distortions in electric networks] // Elektroenergiya. Peredacha i raspredelenie. 2016. No 11 (88). pp. 2–11.

6. Upravlenie kachestvom elektroenergii [Power quality management] / I. I. Kartashev, V. N. Tul'skij, R. G. Shamonov i dr.; pod red. Yu. V. Sharova. M. : Izdatel'skij dom MEI, 2006. 320 p.

7. Tul'skij V. N., Radilov T. V., Korolev V. M., Silaev M. A., Suvorova E. A. Ocenka kachestva elektroenergii v raspredelitel'nyh elektricheskih setyah [Assessment of the quality of electricity in distribution electric networks] // Elektroenergiya. Peredacha i raspredelenie. 2019. No 6 (57). pp. 118–123.

8. Kononenko V. Yu., Murachev A. S., Smolencev D. O. Zadachi nauchno-tekhnicheskoj politiki v oblasti kachestva elektroenergii na sovremennom etape formirovaniya cifrovoj ekonomiki RF [Problems of scientific and technical policy in the field of power quality at the present stage of formation of the digital economy of the Russian Federation] // Elektroenergiya. Peredacha i raspredelenie. 2018. No 2 (47). pp. 28−31.













DOI: 10.34286/1995-4646-2020-74-5-44-52

УДК 631.862.2:636.4:631.15

LYUDMILA S. KACHANOVA, Advanced Doctor in Economic Sciences, Ph. D. of Engineering Sciences, Associate Professor, Professor

ALEXEY V. BARYSHNIKOV, Cycle chief, senior lecturer at the military training center, lieutenant colonel

SERGEY A. NOVIKOV, Head of the training division, deputy head of the military training center, Colonel
Don State Technical University, Russian Federation, Rostov-on-Don




Abstract. In the Russian Federation, more than 40% of pork meat production is accounted for by small, medium and large pig farms with a population of 1,000 to 12,000 pigs. Based on the technologies of keeping pigs on farms, litter (solid), semi-liquid and liquid manure is produced. More than 30 % of pig farms produce liquid manure with a humidity of 94...96 %. Fresh liquid manure contains a large amount of pathogenic microflora, which creates a direct threat to the environment in places of its accumulation and storage. Currently, technologies for processing liquid manure into organic fertilizers have not been developed. The analysis of existing technologies for processing liquid manure on pig farms revealed a number of shortcomings, the main of which are environmental pollution and the production of low-quality organic fertilizers. Based on economic feasibility, a technology for processing liquid manure on a pig farm using a mobile installation is proposed, which reduces the operating costs for processing 1 ton (m3) of liquid manure by 10...60 %, as well as obtaining high-quality solid and liquid organic fertilizers and improving environmental safety in places where they are accumulated and stored.

Key words: technology, manure processing, pig farm, solid and liquid fractions, brush auger, organic fertilizers, biologically active additive, concentrated fertilizers, operating costs.




1. Lipkovich E. I., Bondarenko A. M., Lipkovich I. E. Ecological balance of technogenic processes and tractors of fifth generation // Research Journal of Pharmaceutical, Biological and Chemical Sciences (RJPBCS). Vol. 7, Issue 3. 2016. рр. 751−760.

2.Bondarenko A. M., Kachanova L. S. Tekhnologii i tekhnicheskie sredstva proizvodstva i primeneniya organicheskih udobrenij [Technologies and technical means of production and application of organic udobrenij]: monografiya. Zernograd : ACHII FGBOU VO DonGAU, 2016. 224 p.

3. Bondarenko A. M., Lipkovich E. I., Lipkovich I. E. Distribution of masses and technological schemes of agricultural combines // Journal of Industrial Pollution Control. 2017. Т. 33. No 1. pp. 116−1170.

4. Kovalev N. G., Glazkov I. K. Proektirovanie sistem utilizacii navoza na zhivotnovodcheskih kompleksah [Design of manure utilization systems on livestock complexes]. M. : Agropromizdat, 1989. 160 p.

5. Lipkovich E. I., Bel'tyukov L. P., Bondarenko A. M. Organicheskaya sistema zemledeliya [Organic farming system] // Tekhnika i oborudovanie dlya sela. 2014. No 8 (206). pp. 2−7.

6. Bondarenko A. M. Mashinno-tekhnologicheskoe soprovozhdenie uluchsheniya pochv [Machine- technological support of soil improvement] // Vestnik agrarnoj nauki Dona. 2017. No 37-1. pp. 79−88.

7. Erohin M. N., Leonov O. A.Vzaimosvyaz' tochnosti i nadezhnosti soedinenij pri remonte sel'skohozyajstvennoj  tekhniki [The relationship between accuracy and reliability of connections in the repair of agricultural  machinery] // Vestnik FGOU VPO MGAU. 2006. № 2. pp. 22–25.

8. Bondarenko A. M., Yalamov V. F., Strogij B. N. Razdelenie zhidkogo svinogo navoza na frakcii [Separation of liquid pig manure into fractions] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. 2008. No 8. pp. 3−4.

9. Svinarev I. Yu., Mihajlova I. N. Ekologicheskie aspekty hraneniya svinogo navoza [Ecological aspects of pig manure storage] // Nauchnyj zhurnal KubGAU. 2013. No 91(07). pp. 1147−1156.

10. Chen K.-C., Wang Y.-H. Control of disinfection by-product formation using ozone-based advanced oxidation processes // Environmental Technology. 2012. No 33 (4). рр. 487−495.

11. 11.Bichai F., Polo-Lopez M. I., Fernandez Ibanez P. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation // Water Research, 2012. Vol.46 (18). рр. 6040−6050.

12. Bondarenko A. M., Rubannikov A. V., Ezerskij G. V. Rezul'taty ispytanij kompaktnoj ustanovki dlya obezvozhivaniya zhidkogo svinogo navoza [Test results of a compact unit for dewatering liquid pig manure] // Sb. nauch. tr. VNIPTIMESKH. Zernograd, 1992. pp. 74−80.

13. Korolenko P. I. Superudobrenie organicheskoe "Agrovit-Kor" [Organic Superfertilizer "Agrovit-KOR"]: tekhnicheskie usloviya TU 9291-001-40561837-98. 1998. 14 p.

14. Bittman S., Dedina M., Howard C. M., Oenema O., Sutton M. A. Sokrashchenie vybrosov ammiaka: mery i dejstviya. Rekomendacii Celevoj gruppy po himicheski aktivnomu azotu EEK OON Centr ekologii i gidrologii [Reduction of ammonia emissions: measures and actions. Recommendations of the UNECE Task force on reactive nitrogen. Center for ecology and hydrology]. Edinburg, Velikobritaniya, 2014. 101 p.

15. Sandu I. S., Burak P. I., Poluhin A. A. Ekonomicheskie aspekty tekhniko-tekhnologicheskoj modernizacii sel'skogo hozyajstva v usloviyah integracii v Evrazijskij ekonomicheskij soyuz [Economic aspects of technical and technological modernization of agriculture in the context of integration into the Eurasian economic Union] // Ekonomika sel'skogo hozyajstva Rossii. 2015. No 7. pp. 84−89.

16. Limarenko N. V. Modelirovanie tekhnologicheskogo processa utilizacii stokov zhivotnovodstva [Modeling of the technological process of animal husbandry waste disposal] // Sb. : Sovremennye problemy matematicheskogo modelirovaniya, obrabotki izobrazhenij i parallel'nyh vychislenij 2017: sb. trudov mezhdunar. nauch. konf. pos. Divnomorskoe, 4−11 sentyabrya, 2017. pp. 158−166.

17. Marchenko V. I., Grebennik V. I., Grebennik D. V., Bochkov E. P. Bezothodnaya tekhnologiya utilizacii pticevodcheskih othodov [Waste-free technology of poultry waste utilization] // Povyshenie effektivnosti ispol'zovaniya sel'skohozyajstvennoj tekhniki. 63-64 Nauchno-proizvodstvennaya konferenciya fakul'teta mekhanizacii sel'skogo hozyajstva. 2000. pp. 87−92.






DOI: 10.34286/1995-4646-2020-74-5-53-58

УДК 631.6:004.942


IRINA F. YURCHENKO, Advanced Doctor in Engineering Sciences, Professor, Senior Research Officer

All-Russian Research Institute for Hydraulic Engineering and Land Reclamation, Russian Federation, Moscow




Abstract. Modern agricultural production on reclaimed land requires effective management of hydro-reclamation systems in order to form effective indicators of the reclamation regime of agroecosystems that guarantee the specified productivity of agricultural crops without losing the soil fertility of reclaimed land and the environmental safety of agricultural landscapes. The successful solution of these tasks is associated with the regulation of digital transformation procedures for the key tasks of organizing and managing production processes of the reclamation water management complex. The purpose of this work is to identify effective parameters of digitalization and analytical evaluation of the results of the introduction of digital technologies by enterprises of the Russian agro-industrial complex to determine the priority directions of innovative transformation of reclaimed agricultural production. In the course of the research, analytical methods were used to compare and study statistical data of digitalization materials that are in the public domain to identify key factors in the formation of a new infrastructure and to determine the conditions and results of digitalization of production processes of land reclamation. The paper presents promising directions for the development of digitalization of agricultural production for solving: general problems of the theory and practice of innovative development of the latter, as well as problems of resource provision and the evolution of consulting and expert services; issues of reducing the risk of participants in innovation activities and forming the leading role of educational and scientific institutions as generators of innovations. The fundamental direction of modern digitalization is the formation of a single platform that connects all the systems of an "intelligent enterprise", practically in the "offline" mode, removing routine actions and traditional "manual" control of processes from a person.

Key words: digitalization, production, production processes, reclamation water management complex.




1. Nauchnye osnovy sozdaniya i upravleniya meliorativnymi sistemami v Rossii [Scientific basis for the creation and management of irrigation and drainage systems in Russia] / Pod red. L. V. Kirejchevoj. M. : FGBNU VNII agrohimii, 2017. 296

2. Shabanov V. V. Avtomatizaciya kompleksnogo regulirovaniya faktorov zhizni rastenij [Automation of complex regulatory factors plant life] // Gidrotekhnika i melioraciya. 1982. No 1. pp. 60−75.

3. Nitochkin M. Cifrovizaciya APK. Modnyj «hajp» ili real'nyj biznes-instrument dlya otrasli [Digitalization of the agroindustrial complex. Modny "HYIP" or real business-tool for the industry] // Agroinvestor. 2020. No 5. pp. 19.

4. Cifrovizaciya sel'skohozyajstvennogo proizvodstva Rossii na period 2018−2025 gody [Digitalization of  agricultural production in Russia for the period 2018-2025]. M. : Proekt «Germano-Rossijskij agrarno- politicheskij dialog», 2018. 35 p.


6. Ognivcev S. B. Cifrovizaciya ekonomiki i ekonomika cifrovizacii [Digitalization of the economy and the economy of digitalization] // Mezhdunarodnyj sel'skohozyajstvennyj zhurnal. 2019. No 2 (368). pp. 77−80.

7. Zaharyan A. V., Pomerko E. S., Negodova A. V., Davydenko M. A. Cifrovaya ekonomika i perspektivy ee rosta na 2018−2020 gody [Digital Economy and its growth prospects for 2018-2020] // Ekonomika i predprinimatel'stvo. 2018. No 5 (94). pp. 169−173.

8. Kumari R. et al. Input-Output Analysis for Rural Industrial Development of Patna Region // Journal of Regional Development and Planning. 2014. T. 3. No 2. pp. 37−50.

9. Adesta E. Y. T., Agusman D., Avicenna A. Internet of Things (IoT) in Agriculture Industries // Indonesian Journal of Electrical Engineering and Informatics (IJEEI). 2017. T. 5. No. 4. pp. 376−382.

10. Novye tekhnologii proektirovaniya, obosnovaniya stroitel'stva, ekspluatacii i upravleniya meliorativnymi sistemami [New technologies of design, justification of construction, operation and management of reclamation systems] / Pod red. doktora tekhn. nauk, prof. L. V. Kirejchevoj. M., 2010. 240 p.

11. Ekologo-ekonomicheskaya effektivnost' kompleksnyh melioracij Barabinskoj nizmennosti [Ecological and economic efficiency of complex meliorations of the Barabinsk lowland] / pod red. L. V. Kirejchevoj. M. : VNIIA, 2009. 312 p.

12. Yurchenko I. F., Bandurin M. A., Vanzha V. V., Volosukhin V. A., Bandurina I. P. Risk assessment of land reclamation investment projects / V sb.: Advances in social science, education and humanities research Proceedings of the International Conference Communicative Strategies of Information Society (CSIS 2018). 2019. pp. 216−221.

13. Volosuhin Ya. V., Bandurin M. A. Primenenie nerazrushayushchih metodov pri provedenii  ekspluatacionnogo monitoringa tekhnicheskogo sostoyaniya kanalov obvodnitel'no-orositel'nyh [The use of non- destructive methods in conducting operational monitoring of the technical condition of irrigation  and irrigation canals] // Monitoring. Nauka i bezopasnost'. 2012. No 2. pp. 102−106.

14. Nosov A. K., Yurchenko I. F. Vyyavlenie potencial'no opasnyh GTS sfery melioracij [Identification of potentially dangerous GTS of the sphere of melioration] // Puti povysheniya effektivnosti oroshaemogo zemledeliya. 2013. Vyp. 51. pp. 101−110.

15. Bandurin M. A., Volosukhin V. A., Yurchenko I. F. The efficiency of impervious protection of hydraulic structures of irrigation systems // Advances in Engineering Research. 2018. pp. 56−61.

16. Yurchenko I. F., Bandurin M. A., Volosukhin V. A., Vanzha V. V., Mikheyev A. V. Reclamation measures to ensure the reliability of soil fertility // Advances in Engineering Research. 2018. pp. 62−66.

17. Bandurin M. A., Bandurina I. P., Yurchenko I. F. Computer technology to assess the capacity reserve of the irrigation facilities of the agro-industrial complex // 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019. 2019. pp. 8933970.

18. Yurchenko I. F. Information support system designed for technical operation planning of reclamative facilities // Journal of Theoretical and Applied Information Technology. 2018. T. 96. No 5. pp. 1253−1265.

19. Botneva Yu. S., Potapov A. A. Primenenie geoinformacionnyh sistem v sel'skom hozyajstve [Application of geoinformation systems in agriculture] // Voprosy nauki i obrazovaniya. 2018. No 10 (22). pp. 152−154.

20. Bandurin M. A., Volosukhin V. A., Mikheev A. V., Volosukhin Y. V., Vanzha V. V. Finite-element simulation of possible natural disasters on landfall dams with changes in climate and seismic  conditions taken into account // Journal of Physics: Conference Series. 2018. T. 1015. pp. 032011.






DOI: 10.34286/1995-4646-2020-74-5-59-68

УДК (631.371:621.311).003.13



ARTYOMBEK S. GUZALOV, Teaching Assistant

OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor, Academician of the Russian Academy of Sciences

SERGEJ N. DEVYANIN, Advanced Doctor in Engineering Sciences, Professor Russian Timiryazev State Agrarian University, Russian Federation, Moscow 




Abstract. The analysis of modern trends in the development of turbocharging is carried out. It is proved that diesel engines with hybrid supercharging units have the greatest potential in terms of compliance with modern environmental standards and requirements for automotive engines. A review and analysis of Russian and foreign experience in the development and use of hybrid internal combustion engine supercharging systems and exhaust gas energy recovery units showed that the study and development of hybrid components of automotive engines can be considered relevant and promising. A method has been developed for calculating the boost parameters of a traction vehicle engine using a turbocharger with an additional controlled electric boost (DUEN) as a boost unit. This technique allows us to assess the prospects for improving engine performance by spinning the turbine wheel at idle and rated engine modes, where the efficiency of a conventional single-stage system is often insufficient. The calculation method shows that in unsteady operating modes of the turbocharger, when it is usually necessary to increase the excess air coefficient, it is possible to regulate the air supply with the help of an additional controlled electronic boost. The developed and manufactured prototype of a turbocharger with an additional controlled electronic boost has an advantage over a turbocharger with an auxiliary electric motor in solving the problem of the absence of high currents in the engine.

Keywords: internal combustion engine, gas turbine supercharging, auxiliary separate electric heater, energy efficiency, calculation method of an engine with a power electric installation.




1. Bogatyrev A. V., Lekhter V. R. Traktory i avtomobili [Tractors and cars]: uchebnik / pod red. A. V. Bogatyreva. M. : Infa-M, 2019. 480 p.

2. Lazarev E. A. Osobennosti organizacii rabochego cikla v dizele vysokoj litrovoj moshchnosti [Features of the organization of the working cycle in a diesel engine of high liter capacity] / E. A. Lazarev, V. S. Murzin, V. E. Lazarev i dr. // Vestnik YuUrGU. Ser. Mashinostroenie. 2013. T. 13. No 1. pp. 36–43.

3. McGuire J., Patterson A., Tett D. Electric-turbocompounding on heavy duty diesel engine // 10-th international conference on commercial vehicle, Germany. 2009. 14 p.

4. Capobianco M., Marelli S. Transient Performance of Automotive Turbochargers: Test Facility and Preliminary Experimental Analysis // SAE Technical Paper. 2005. No 2005–24–066. pp. 1–12.

5. Sinyavskij V. V., Ivanov I. E. Forsirovanie dvigatelej. Sistemy i agregaty nadduva [Forcing engines. Systems and supercharging units]: uchebnoe posobie. M. : MADI, 2016. 112 p.

6. Lashko V. A. Perspektivy razvitiya intellektual'nyh porshnevyh DVS [Prospects for the development of intelligent piston internal combustion engines] // Elektronnoe nauchnoe izdanie "Uchenye zametki TOGU". 2014. T. 5. No 1. pp. 260–287.

7. Izmajlov A. Yu., Didmanidze O. N., Mityagin G. E. Sovremennye problemy i napravleniya tekhnicheskoj ekspluatacii transportnyh i transportno-tekhnologicheskih mashin [Modern problems and directions of technical operation of transport and transport-technological machines]. M. : OOO "UMC "Triada", 2015. 119 p.

8. Sharoglazov B. A., Mashkov O. G., Vakengut P. B. Avtomatizirovannaya ocenka chislennyh znachenij iskhodnyh parametrov pri modelirovanii processov v porshnevyh dvigatelyah [Automated estimation of numerical values of initial parameters in modeling processes in piston engines] // Vestnik YuUrGU. Ser. Mashinostroenie. 2013. T. 13. No 1. pp. 80–85.

9. Epifanov D. V. Metodika vybora tipa i harakteristik agregatov nadduva avtomobil'nogo DVS, udovletvoryayushchego perspektivnym ekologicheskim i ekonomicheskim trebovaniyam [Method of selecting the type and characteristics of supercharging units of an automobile internal combustion engine that meets promising environmental and economic requirements]: dis. ... kand. tekhn. nauk: 05.04.02 / Epifanov Dmitrij Vladimirovich. Nizhnij Novgorod, 2010. 156 p.

10. Kolchin A. I., Demidov V. P. Raschet avtomobil'nyh i traktornyh dvigatelej [Calculation of automobile and tractor engines: a textbook for universities]: uchebnoje posobie dlya vuzov. 2-e izd., pererab. i dop. M. : Vysshaya shkola, 1980. 400 p.

11. Lojcyanskij L. G. Mekhanika zhidkosti i gaza [Mechanics of liquid and gas]. M. : L. : Gostekhizdat, 1950. 676 p.

12. Kaminskij V. N. Ispol'zovanie informacionnyh tekhnologij pri kontrol'no-issledovatel'skih ispytaniyah turbokompressora na bezmotornom stende [Use of information technologies in control and research tests of a turbocharger on a non-motor stand] / V. N. Kaminskij, R. V. Kaminskij, A. V. Lazarev i dr. // Sb. tr. VI Mezhdunarodnoj nauchno-prakticheskoj konferencii "Informacionnye i kommunikacionnye tekhnologii v obrazovanii, nauke i proizvodstve". Protvino, 2012. pp. 434−436.

13. Kas'yanov A. V., Kovalenko N. M. Matematicheskoe modelirovanie eksperimental'nyh harakteristik turbiny i kompressora nadduva [Mathematical modeling of experimental characteristics of a turbine and a supercharging compressor] // Dvigateli vnutrennego sgoraniya. 1981. No 34. pp. 45–49.

14. Yurenkov V. N. Osnovnye principy i rezul'taty issledovanij kompressorov i turbin agregatov nadduva dizelej na bezmotornom stende [Basic principles and results of research of compressors and turbines of diesel supercharging units on a non-motor stand] // Polzunovskij vestnik. 2003. No 1-2. pp. 70−77.

15. Cinne K. Nadduv dvigatelej vnutrennego sgoraniya = Aufladung von Verbrennungsmotoren [Supercharging of internal combustion engines] / K. Cinner; per. s nem. V. I. Fedyshin; pod red. N. N. Ivanchenko. L. : Mashinostroenie ; Leningradskoe otdelenie, 1978. 264 p.

16. Shestakov D. S. Agregaty nadduva dvigatelej vnutrennego sgoraniya [Supercharging Units of internal combustion engines]: uchebnoe posobie. Ekaterinburg : UrFU, 2013. 258 p.






DOI: 10.34286/1995-4646-2020-74-5-69-77

УДК 621.33:005.93+631.173.4


SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Professor

OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor, Academician of the Russian Academy of Sciences

ARTYOMBEK S. GUZALOV, Assistant Russian Timiryazev State Agrarian University, Russian Federation, Moscow




Abstract. This study is aimed at the development of engineering analysis of basic skills of independent work and the formation of a creative approach to solving problems of technological design of car service enterprises, taking into account the type and number of cars serviced. The subject of the article design of car service stations is related to the problems that arise in the course of changing the quantitative and qualitative composition of road transport. The article considers the current state of the production and technical base of car service enterprises and the organizational forms of their activities, describes the procedure and technology for performing calculations of the annual program, the labor intensity of the main types of work, the area of production and administrative divisions, the number of main production and auxiliary workers. Attention is focused and calculations are given for improving the car diagnostics section, calculations of the D-1 and D-2 diagnostic sections intended for determining the technical condition of the car. Recommendations are given on the table of technological equipment for the diagnostic and MAINTENANCE area, as well as planning solutions for the diagnostic area. The current state of service stations and organizational forms of their activity are considered. An example of technological calculation in the design of a car service enterprise is given, a diagram of the reconstructed section of diagnostics and maintenance of cars is presented, which allows to reduce the time of performing maintenance.

Key words: diagnostics, labor intensity, car, site, annual program, maintenance and repair.




1. Volgin V. V. Avtoservis: Sozdanie i komp'yuterizaciya [Auto Repair: Creation and computerization: a practical guide]: prakticheskoe posobie. M. : Izdatel'sko-torgovaya korporaciya "Dashkov i K", 2008. 572 pp.

2. Bondareva G. I., Leonov O. A., Shkaruba N. Zh. Vhodnoj kontrol' i metrologicheskoe obespechenie na predpriyatiyah tekhnicheskogo servisa [Incoming inspection and metrology assurance at the enterprises of technical service] // Sel'skij mekhanizator. 2017. No 4. pp. 36−38.

3. Golinickij P. V., Vergazova Yu. G., Antonova U. Yu. Razrabotka procedury upravleniya vnutrennej dokumentaciej dlya promyshlennogo predpriyatiya [Development of procedures for internal control documentation for the industrial enterprise Competence] // Kompetentnost'. 2018. No 7 (158). pp. 20−25.

4. Varnakov V. V., Strel'cov V. V., Popov V. N., Karpenkov V. F. Organizaciya i tekhnologiya tekhnicheskogo servisa mashin [Organization and technology of technical service of machines]: Uchebnik. M. : KolosS, 2007. 277 p.

5. Tojgambaev S. K., Evgrafov V. A. Effektivnost' ispol'zovaniya mashinotraktornogo parka predpriyatiya [Efficiency of using the machine-tractor fleet of the enterprise] // Doklady TSKHA: Sbornik statej Mezhdunarodnoj nauchnoj konferencii posvyashchennoj 130-letiyu N. I. Vavilova 5–7 dekabrya 2017  goda, RGAU−MSKHA (g. Moskva). 2018. Vyp. 290 (chast' II). URL:

6. Markov O. D. Stancii tekhnicheskogo obsluzhivaniya avtomobilej [Car maintenance Stations]. Kiev : Kondor, 2008. 536 p.

7. Shnyrev A. P., Tojgambaev S. K. Osnovy nadezhnosti transportnyh i tekhnologicheskih mashin [Fundamentals of reliability of transport and technological machines]: Uchebnoe posobie dlya studentov tekhnicheskih VUZov UMO MGUP. M. : Izdatel'skaya kompaniya "Sputnik +", 2006.

8. RD 37.009.026–92. Polozhenie o tekhnicheskom obsluzhivanii i remonte avtotransportnyh sredstv, prinadlezhashchih grazhdanam (legkovye i gruzovye avtomobili, avtobusy, mini-traktora). URL:

9. McGregor B. A., Kerven C., Toigonbaev S. Sources of variation contributing to production and quality attributes of Kyrgyz cashmere in osh and Naryn provinces: implications for industry development. Small Ruminant Research. 2009. T. 84. No 1-3. pp. 89−99.

10. Tojgambaev S. K., Golinickij P. V. Razmernyj analiz podshipnikov skol'zheniya pri obzhatii [Dimensional analysis of sliding bearings in compression] // Vestnik MGAU im. V. P. Goryachkina. 2013. No 2 (58). pp. 38−40.





DOI: 10.34286/1995-4646-2020-74-5-78-85

УДК 621.45.034.3


SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Professor Russian Timiryazev State Agrarian University, Russian Federation, Moscow 




Abstract. To identify all the design and operational factors that affect the working process of the nozzle, it was disassembled and analyzed every detail, purpose, operating principle and working surfaces. Structural parameters were taken as those that spontaneously change during operation or are corrected by adjustment during maintenance of the fuel system. Methods for assessing the state of each of the structural parameters were established. Each of the structural parameters can be changed by replacing parts, restoring them, or adjusting them accordingly. A scheme for assessing the impact of changes in each of the structural parameters of the nozzle on its diagnostic parameters is proposed. Analysis of the resulting scheme showed that it is easiest to influence the diagnostic parameters of the nozzle by changing the structural parameters of the shut-off valve. Detail the technology of repair injector fuel system Common Rail: cleaning, disassembly, fault detection, restoration of mobility of the needle Assembly, testing and regulation, pressure check start of injection of fuel, check the mobility of the needle spray, the quality of atomization of fuel, check the tightness on the locking cone dispenser, verification of the capacity of the injector. The proposed test scheme and regulation of the diagnostic parameters of the electrohydraulic nozzle allows to improve the atomization of fuel when it is fed into the combustion chamber of the internal combustion engine, which leads to fuel economy without loss of engine power.

Key words: repair technology, electrohydraulic fuel system nozzle, structural parameters, maintenance, diagnostic parameters, fuel spraying, spray holes.




1. Apatenko A. S., Bykov V. V., Golubev I. G., Evgrafov V. A., Golubev M. I. Tekhnologiya i organizaciya vosstanovleniya detalej i sborochnyh edinic pri servisnom soprovozhdenii [Technology and organization of restoration of parts and assembly units with service support]. M., 2017. 141 p.

2. Sevryugina N. S., Sharapov R. R. Metodika obespecheniya bezopasnosti pri prodlenii funkcional'nogo resursa stroitel'nyh mashin i sredstv kompleksnoj mekhanizacii [Methods of ensuring safety when extending the functional resource of construction machines and means of complex mechanization] // Mir transporta i tekhnologicheskih mashin. 2017. No 3 (58). pp. 52−59.

3. Shnyrev A. P., Tojgambaev S. K. Ustrojstvo dlya vosstanovleniya bronzovyh vtulok [Device for restoration of bronze bushings] // V sb.: Prirodoohrannoe obustrojstvo territorij: Materialy nauchno-tekhnicheskoj konferencii. 2002. pp. 153−154.

4. Tojgambaev S. K., Evgrafov V. A. Opredelenie trudoemkosti diagnostirovaniya avtomobilej [Determination of the labor intensity of car diagnostics] // Estestvennye i tekhnicheskie nauki. 2019. No 12 (138). pp. 384−389.

5. Tojgambaev S. K. Razrabotka stendov dlya promyvki forsunok dvigatelej i remonta avtomobil'nyh elektrobenzonasosov [Development of stands for washing engine injectors and repair of automobile electric fuel pumps] // V sb.: Social'no-ekonomicheskaya modernizaciya vektor razvitiya strany: Sbornik materialov I mezhdunarodnoj nauchno-prakticheskoj konferencii. 2012. pp. 512−520.

6. Tojgambaev S. K. Stend dlya obkatki i ispytaniya dvigatelej [Stand for running-in and testing of engines] // Aktual'nye problemy sovremennoj nauki. 2014. No 5 (78). pp. 146−149.

7. Tojgambaev S. K. Ispytaniya dvigatelej na special'nyh stendah [Engine tests on special stands] // Aktual'nye problemy sovremennoj nauki. 2015. No 5 (84) 2015. pp. 163−167.

8. Tojgambaev S. K., Slepcov O. N. Matematicheskoe modelirovanie ispytaniya toplivnyh nasosov nizkogo davleniya toplivnoj sistemy dizelya [Mathematical modeling of testing of low-pressure fuel pumps of diesel fuel system] // V sb.: LOGISTIKA, TRANSPORT, EKOLOGIYA–2017: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii. 2017. pp. 83−94.