THE INTERNATIONAL
TECHNICAL-ECONOMIC
JOURNAL

Contents

PROCESSES AND MACHINES OF AGROENGINEERING SYSTEMS

Shmigel V. V., Uglovsky A. S., Utkina Y. S. 

FABTracker: measuring the temporal progression of fish activity levels using laboratory  video surveillance

 
7

Andreev S. A.

Determining the coefficient of use of wind energy in wind motors with reorienting blades

 
14

Vinogradov A. V., Zaginaylov V. I., Mamedov T. A.

Input-accounting-distribution device of consumers as an element of power supply systems  with distributed generation of 0.4 kV

 
22

Burmenko F. Yu., Mihaylov V. S.

Study of the influence of wearing of dosing disks pneumatic devices vegetable seeders  for quality seeding onion

 
31

Sidorov M. V., Stepin P. I.

Effect of tyre pressure on tractor stability

 
40

Sidorov M. V., Sidorin R. V.

Justification of pickup tractor weight based on road engagement at change of lifting angle

 
50

Aleynikov Y. G., Mityagina Y. G.

Force sensors in a construction of a walking machine with dynamic stability

 
56

Tojgambaev S. K., Didmanidze O. N., Guzalov A. S.

Design of a stand for diagnostics of the state of the brake system of the KamAZ-65117 car

 
63

Tojgambaev S. K.

Assignment of types and determination of the scope of repair work for the central repair shop  of farms in Kazakhstan

 
73

Sokolov K. O., Tojgambaev S. K.

Research method for baking bronze powders by centrifugal electric arc method

 
80

 

 

ENERGY

Prokazov I. P.

Consideration of optimization problems in the development of schedules for scheduled preventive repairs in the electric power industry

 
89

Gorbunova M. I.

Formation of the structure of continuous energy consumption in megacities

 
98


Abstracts

 
106

 

 

 

________________________________________________________________________________________

 

 

 

 

 

PROCESSES AND MACHINES OF AGROENGINEERING SYSTEMS

 

 

 

 

DOI: 10.34286/1995-4646-2020-75-6-7-13

УДК (639.3:005.61).001.8

 

VLADIMIR V. SHMIGEL, Advanced Doctor in Engineering Sciences, Professor

ARTEM S. UGLOVSKY, Ph. D. of Engineering Sciences, Associate Professor

YULYA S. UTKINA, Postgraduate

Yaroslavl State Agricultural Academy, Russian Federation, Yaroslavl

 

FABTRACKER: MEASURING THE TEMPORAL PROGRESSION OF FISH ACTIVITY LEVELS USING LABORATORY VIDEO SURVEILLANCE

Abstract. Behavioral tests on fish require the subject to interact with sensors and actuators distributed in the experimental environment. To ensure reliable results and universal control of these devices, it is important to use an automated control system. Commercial systems for monitoring fish motor activity are usually based on software implementations that limit their use to the vendor's proprietary hardware. The article presents fabtracker – a software written in C# with the WPF client application building system, which allows Windows-based software to function as a system for conducting fully automated behavioral experiments. fabtracker includes video tracking of animals, identification of zones by video signal to determine in real time the motor system of fish, with online tracking, as well as recording experimental data. The C# environment was chosen so that researchers can easily adapt the code and extend it to their needs.

Key words: crucian carp, electrostatic field, video surveillance, motor activity, trajectory, Fabtracker.

 

REFERENCES

1. Ramazani R. B., Krishnan H. R., Bergeson S. E., Atkinson N. S. Computer auto-mated movement detection for the analysis of behavior. J Neurosci Meth2007;162:171–9.

2. Togasaki D. M., Hsu A., Samant M., Farzan B., DeLanney L. E., Langston J.W., et al. The Webcam system: a simple, automated, computer-based video system forquantitative measurement of movement in nonhuman primates. J NeurosciMeth 2005;145:159–66.

3. Zhang F. SuperState: a computer program for the control of operant behavioralexperimentation. J Neurosci Meth 2006;155:194–201.

4. Shmigel' V. V., Uglovskij A. S., Utkina Yu. S. Sistema videonablyudeniya BIOTRACKER dlya avtomaticheskoj registracii povedeniya karasej s vozdejstviem na nih elektrostaticheskogo polya [BIGTRACKER video surveillance system for automatic registration of carp behavior with the influence of an electrostatic field on them] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2020. No 3. pp. 75−82.

 

________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2020-75-6-14-21

УДК 621.548.001.5

 

SERGEJ A. ANDREEV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 


DETERMINING THE COEFFICIENT OF USE OF WIND ENERGY IN WIND MOTORS WITH REORIENTING BLADES

Abstract. An important indicator of the quality of wind motors is the wind energy utilization factor, which is the quotient of the mechanical power divided by the power of the wind flow falling on the swept surface of the blades. To date, the value of the coefficient of wind energy utilization is fairly accurately defined for wind turbines that use the high-speed properties of the wind. At the same time, for wind engines based on the power properties of the wind, this figure has been calculated only tentatively. The article analyzes the interaction of wind flow with the blades of the wind turbine, taking into account changes in their position in space. At the same time, an elementary section on the surface of the blades was singled out, and the total value of the transformed energy was determined by integrating the investigated function within the actual limits of the rotation angle. As a result of dividing the transformed power by the power of the corresponding wind flow, an expression for calculating the wind energy utilization factor was determined. It was shown that the wind energy utilization factor depends on the blade size and the ratio of the circular rotation speed to the progressive speed of the flow. As a result of theoretical research, it was found that the coefficient of wind energy utilization is achieved at the number of modules corresponding to the value of 0.6255. Numerical values of the wind energy utilization factor for a wind turbine at the number of modules from zero to one have been determined. At the same time, numerical values of the wind energy utilization factor were calculated for different views on estimating the size of the active surface of the blades. For the convenience of practical use of the research results, a nomogram linking the rotational frequency of the wind turbine shaft with the blade length and the progressive speed of the wind flow was constructed.

Key words: wind turbine, wind energy efficiency coefficient, wind properties, active blade surface, power.

 

REFERENCES

1. Tveritin A. V. Ispol'zovanie vetroenergeticheskih ustanovok v sel'skom hozyajstve [The use of wind power plants in agriculture] / VASKHNIL; VNII informacii i tekhniko-ekonomicheskih issledovanij po sel'skomu hozyajstvu. M. : VNIITEISKH, 1985. 60 p.

2. Peter South, Eric W. Jacobs "The evalution of innovative wind energy concepts" Wind Energy innovative systems conference, Colorado Springs, 1980. pp. 12–35.

3. Shefter Ya. I., Rozhdestvenskij I. V. Izobretatelyu o vetrodvigatelyah i vetroustanovkah [Christmas IV Inventor of wind turbines and wind turbines] // Izdatel'stvo ministerstva sel'skogo hozyajstva SSSR. M. , 1957. 145 p.

4. Abramovskij E. R., Gorod'ko S. N., Sviridov N. V. Aerodinamika vetrodvigatelej [Wind turbine aerodynamics]. Dnepropetrovsk : DGU, 1987. 220 p.

5. Fateev E. M. Vetrodvigateli i vetroustanovki [Wind turbines and wind turbines] // OGIZ Gosudarstvennoe izdatel'stvo sel'skohozyajstvennoj literatury. M. , 1957. 536 p.

6. Andreev S. A., Antonyan L. V. Opredelenie koefficienta ispol'zovaniya energii vetra karusel'nymi vetrodvigatelyami [Determination of the coefficient of wind energy use by carousel wind engines] // Primenenie elektroenergii i ekspluataciya ustrojstv sel'skogo elektrosnabzheniya: Sbornik nauchnyh trudov MIISP. M. : MIISP, 1992. pp. 49−61.

7. Korn G., Korn T. Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov [Handbook of mathematics for scientists and engineers]. M. : Nauka. Glavnaya redakciya fiziko-matematicheskoj literatury, 1984. 832 p.

8. Levitskij N. I. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]: Uchebnoe posobie dlya vuzov. 2-e izd., pererab. i dop. M. : Nauka. Glavnaya redakciya fiziko-matematicheskoj literatury, 1990. 592 p.

9. Vetroenergetika [Wind power] / Pod red. D. de Renzo : Per. s angl.; pod red. Ya. I. Sheftera. M. : Energoatomizdat, 1982. 272 p.

10. Haritonov V. P. Avtonomnye vetroelektricheskie ustanovki [Autonomous wind power plants]. M. : GNU VIESKH, 2006. 280 p.

________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2020-75-6-22-30

УДК 681.121.+621.317

 

ALEXANDR V. VINOGRADOV, Ph. D. of Engineering Sciences, Associate Professor, Head of the Laborator Federal Scientific Agroengineering Center VIM, Russian Federation, Moscow

VLADIMIR I. ZAGINAYLOV, Ph. D. of Engineering Sciences, Associate Professor

TIMUR A. MAMEDOV, Postgraduate

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 

INPUT-ACCOUNTING-DISTRIBUTION DEVICE OF CONSUMERS AS AN ELEMENT OF POWER SUPPLY SYSTEMS WITH DISTRIBUTED GENERATION OF 0.4 KV

Abstract. Input-accounting-distribution devices (VDU) – devices installed at the inputs of consumers and performing the input, accounting and distribution of electricity. Introductory accounting and distribution devices are an essential part of any electrical system and, being located on the boundary between user networks and the overall electrical network, and often on the boundary of balance delineation between the consumer and the power supply can be element of and monitoring parameters of the operation modes of the electrical network, and a means of increasing the safety of operation of power supply systems. To do this, it is necessary that the input-accounting-distribution devices are equipped with monitoring, control, accounting and management tools that allow automatic and remote control of the device in accordance with the specified functionality. In addition, input-accounting-distribution devices should provide the possibility of safe use of consumer generators and generators included in the structure of distributed generation. All this requires the development of new circuit and design solutions in the development and manufacture of input-accounting-distribution devices.

Key words: input-accounting-distribution devices, monitoring system, monitoring of reliability of power supply and quality of electricity, power supply of consumers, smart electric networks.

 

REFERENCES

1. Vvodno-raspredelitel'noe ustrojstvo. Vikipediya [Introduction and distribution device. Wikipedia]. URL: https://ru.wikipedia.org/wiki/Vvodno-raspredelitel'noe_ustrojstvo.

2. Klassifikaciya vvodno-raspredelitel'nyh ustrojstv [Classification of input and distribution devices]. URL: https://www.asutpp.ru/vvodno-raspredelitelnoe-ustrojstvo.html.

3. IVRU – Inventarnye vvodno-raspredelitel'nye ustrojstva [IVRU-Inventory input and distribution devices]. URL: https://electromarket.su/news/ivru.

4. Elektroshchit [Electroshield]. URL: https://www.elschit33.ru/cat_ivru.shtml.

5. Inventarnye vvodno-raspredelitel'nye ustrojstva. OOO «PK ELTA» [Inventory input and distribution devices. LLC "PC ELTA"]. URL: https://www.pk-elta.ru/elektroschitovoe-oborudovanie/inventarnoe-vvodno-raspredelitelnoe-uchyotnoe-ustr/.

6. Resheniya o predostavlenii subsidij iz federal'nogo byudzheta na gosudarstvennuyu podderzhku tekhnologicheskogo prisoedineniya generiruyushchih ob"ektov, funkcioniruyushchih na osnove ispol'zovaniya vozobnovlyaemyh istochnikov energii [Decisions on granting subsidies from the federal budget for state support of technological connection of generating facilities operating on the basis of the use of renewable energy sources]. URL: https://minenergo.gov.ru/node/12223.

7. Analiz neschastnyh sluchaev na energoustanovkah, podkontrol'nyh organam Rostekhnadzora, za 2017 god / Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru (Rostekhnadzor). 2020 [Analysis of accidents at power plants controlled by Rostekhnadzor authorities for 2017 / Federal Service for Environmental, Technological and Nuclear Supervision (Rostekhnadzor). 2020]. URL: http://dvost.gosnadzor.ru/info/accident/2017/Analiz%20neschastnyh%20sluchaev%20na%20energoustanovkah.pdf.

8. Vinogradov A. V. Varianty ispolneniya ustrojstv signalizacii i blokirovki ot obratnoj transformacii na transformatornyh podstanciyah 10/0,4 kV [Variants of execution of signaling devices and blocking from reverse transformation at transformer substations 10/0.4 kV] / A. V. Vinogradov, A. A. Panfilov, A. S. Bredihin, S. A. Kanyus, M. V. Borodin, A. V. Vinogradova, A. V. Bukreev, V. E. Bol'shev, A. I. Psarev, Yu. B. Ryzhenkov, A. A. Lansberg // Glavnyj energetik. 2020. No 10. pp. 5−14.

9. Vinogradov A. V. Sposob i ustrojstvo dlya predotvrashcheniya obratnoj transformacii na transformatornyh podstanciyah 10/0,4 kV pri nesankcionirovannoj podache napryazheniya v set' 0,4 kV [A method and device for preventing reverse transformation at 10/0.4 kV transformer substations with unauthorized voltage supply to the 0.4 kV network] / A. V. Vinogradov, A. V. Vinogradova, V. E. Bol'shev, A. V. Bukreev, A. A. Panfilov, M. V. Borodin, A. S. Bredihin, S. A. Kanyus // Promyshlennaya energetika. 2020. No 7. pp. 56−62.

10. European Technology & Innovation Platforms (ETIP) Smart Networks for Energy Transition (SNET) R&I IMPLEMENTATION PLAN 2021-2024. URL: https://www.etip-snet.eu/wp-content/uploads/2020/05/Implementation-Plan-2021-2024_WEB1.pdf.

11. Smart Rural Grid. URL: https://smartruralgrid.eu/.

12. Gusarov V. A., Baranov A. Yu. Avtonomnoe elektrosnabzhenie sel'skogo zhilogo doma pri ispol'zovanii istochnikov vozobnovlyaemoj energii i DES dlya rezerva [Autonomous power supply of a rural residential building when using renewable energy sources and DES for the reserve] // Innovacii v sel'skom hozyajstve. 2019. No 1 (30). pp. 58−66.

13. Vinogradov A. V. Koncepciya postroeniya intellektual'nyh elektricheskih setej na baze primeneniya mul'tikontaktnyh kommutacionnyh sistem [The concept of smart grids based on application multicontact switching systems] // Aktual'nye voprosy energetiki v APK: materialy vserossijskoj nauchno- prakticheskoj konferencii s mezhdunarodnym uchastiem (Blagoveshchensk, 27 fevralya 2019 g.). Blagoveshchensk : Dal'nevostochnyj gosudarstvennyj agrarnyj universitet, 2019. pp. 109−115.

14. Osnovnye polozheniya koncepcii intellektual'noj energosistemy s aktivno-adaptivnoj set'yu [The main provisions of the concept of intellectual power system with active-adaptive network]. URL: http:// www.fsk-ees.ru/upload/docs/ies_aas.pdf.

15. Bol'shev V. E., Panfilov A. A., Revkov A. A., Vinogradov A. V. Ustrojstvo kontrolya kolichestva i prodolzhitel'nosti otklyuchenij i otkloneniya napryazheniya na baze mikrokontrollera ARDUINO [Device for monitoring the number and duration of disconnections and voltage deviations based on the ARDUINO microcontroller] // Agrotekhnika i energoobespechenie. 2019. No 2 (23). pp. 36−51.

16. Vinogradov A. A System for Monitoring the Number and Duration of Power Outages and Power Quality in 0.38 kV Electrical Networks [A System for Monitoring the Number and Duration of Power Outages and Power Quality in 0.38 kV Electrical Networks] / A. Vinogradov, V. Bolshev, A. Vinogradova, T. Kudinova, M. Borodin, A. Selesneva, N. Sorokin // In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol 866: 1-10. Springer, Cham. 2019. DOI: 10.1007/978-3-030-00979-3_1.

17. Postanovlenie Pravitel'stva Rossijskoj Federacii ot 27 dekabrya 2004 goda No 861 «Ob utverzhdenii Pravil nediskriminacionnogo dostupa k uslugam po peredache elektricheskoj energii i okazaniya etih uslug, Pravil nediskriminacionnogo dostupa k uslugam po operativno-dispetcherskomu upravleniyu v elektroenergetike i okazaniya etih uslug, Pravil nediskriminacionnogo dostupa k uslugam administratora torgovoj sistemy optovogo rynka i okazaniya etih uslug i Pravil tekhnologicheskogo prisoedineniya energoprinimayushchih ustrojstv potrebitelej elektricheskoj energii, ob"ektov po proizvodstvu elektricheskoj energii, a takzhe ob"ektov elektrosetevogo hozyajstva, prinadlezhashchih setevym organizaciyam i inym licam, k elektricheskim setyam» [Resolution of the Government of the Russian Federation from December 27, 2004 No 861 "On approval of Rules of non- discriminatory access to services in transfer of electric energy and rendering of these services, Rules of non-discriminatory access to services on operative dispatch management in electric power industry and rendering of these services, Rules of non-discriminatory access to services of administrator of trading system of the wholesale market and rendering of these services and Rules of technological connection of power receiving devices of consumers of electric energy, objects producing electric energy, and also objects of electric grid economy belonging to the network organizations and other persons, to electric networks"]. URL: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=LAW&n=349429&fld=134&dst=1000000001,0&rnd=0.01637230187499794#08068684784850308.

 18. Golikov I. O., Vinogradov A. V. Adaptivnoe avtomaticheskoe regulirovanie napryazheniya v sel'skih elektricheskih setyah 0,38 kV [Adaptive automatic voltage regulation in rural electric networks of 0.38 kV]: Monografiya. Orel : FGBOU VO Orlovskij GAU, 2017. 166 p.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-31-39

УДК (631.14:631.531.02).004.12

 

FELIKS YU. BURMENKO, Ph. D. of Engineering Sciences, Associate Professor

VLADIMIR S. MIHAYLOV, Senior Lecturer

Pridnestrovian State University, Moldova, g. Tiraspol'

 

STUDY OF THE INFLUENCE OF WEARING OF DOSING DISKS PNEUMATIC DEVICES VEGETABLE SEEDERS FOR QUALITY SEEDING ONION

Abstract. In the industrial cultivation of onions, the seeding operation is recommended to be carried out with pneumatic precision seeding drills, since it reacts very sharply to the seeding rate. Therefore, the study of technologies and technical means that affect the structure of the onion sowing system remains an urgent and significant practical task, since when compacted, it matures quickly, but forms a small bulb, and when sparsely sown, the onion is larger, since the onion continues to grow, the neck does not ripen, which leads to storage problems. The study was conducted to improve the reliability of the pneumatic apparatus of vegetable seeders. The formation of a high-quality single-seed feed when sowing onions with dosing elements of a pneumatic vacuum seeding machine is influenced by many factors. Among the most important of them is the wear of the seeding set, consisting of a pair of friction "dosing disk – vacuum chamber". Based on theoretical and experimental studies, the rejection wear of the dosing disc was determined. A number of technical solutions have been proposed to increase the resource of this pair of friction pneumatic seeding machine, which lead to a decrease in the level of wear and increase the resource by forming the required properties of the working surfaces, which allows you to use the dosing disc repeatedly.

Key words: vacuum chamber, seeding machine, dosing disk, onion, pneumatic seeder, single-seed feed, wear of the seeding set, resource increase.

 

REFERENCES

1. Sharafutdinov A. V. Obosnovanie konstruktivno-tekhnologicheskih parametrov raspredelitel'nogo ustrojstva pnevmaticheskoj sistemy seyalki [Substantiation of constructive and technological parameters of the distribution device of the pneumatic system of the seeder] // Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2013. No 17. pp. 140−145.

2. Lebedev A. T., Mar'in N. A., Mar'in A. N., Koroleva E. N. Analiz vozmozhnosti organizacii vosstanovleniya rabotosposobnosti diskov vysevayushchih apparatov pnevmaticheskih seyalok [The analysis was possible with the recovery disc planters air seeders] // Sbornik nauchnyh trudov SWorld. 2012. T. 6. No 4. pp. 97−100.

3. Chichkin V. P. Ovoshchnye seyalki i kombinirovannye agregaty: teoriya, konstrukciya, raschet [Vegetable planter and combination units: theory, design, calculation]. Kishinev : Shtiinca, 1984. 394 p.

4. Sklyar P. A., Mel'nik Yu. V. Ispytaniya sel'skohozyajstvennoj tekhniki [Tests of agricultural machinery]. Kishineu : Gosudarstvennyj Agrarnyj Universitet Moldovy, 2019. 336 p. ISBN 978-9975-64-309-2.

5. Pat. 2383420 Rossijskaya Federaciya, MPK B 23 P 6/00 (2006.01), B 23 K 9/04 (2006.01), C 25 D 11/06 (2006.01). Sposob vosstanovleniya i uprochneniya iznoshennyh stal'nyh detalej [Method of restoration and strengthening of worn steel parts] / Kuskov V. N., Paul's V. Yu., Smolin N. I., Romanov E. V.; zayavitel' i patentoobladatel' FGBOU VPO «Tyumenskaya gosudarstvennaya sel'skohozyajstvennaya akademiya» (RU). No 2008129949/02 ; zayavl. 21.07.2008 ; opubl. 03.10.2010, Byul. No 7.

6. Pat. 2510318 Rossijskaya Federaciya, MPK B 23 P 6/00 (2006.01), B 23 H 9/00 (2006.01). Sposob vosstanovleniya vysevayushchego diska dlya pnevmaticheskogo vysevayushchego apparata [A method for restoring a seeding disc for a pneumatic seeding device] / Lebedev A. T., Mar'in N. A., Kaa A. V., Makarenko D. I., Zaharin A. V., Magomedov R. A., Pavlyuk R. V., Lebedev P. A.; zayavitel' i patentoobladatel' FGBOU VPO «Stavropol'skij gosudarstvennyj agrarnyj universitet» (RU). No 2012122133/02 ; zayavl. 29.05.2012 ; opubl. 27.03.2014, Byul. No 9.

7. Savel'ev Yu. A., Kryuchin N. P., Kryuchin A. N. Ocenka vliyaniya aktivatora istecheniya na proizvoditel'nost' diskovo-shtiftovogo vysevayushchego apparata [Evaluation of the effect of the expiration activator on the performance of the disk-pin seeding machine] // Izvestiya Samarskoj gosudarstvennoj sel'skohozyajstvennoj akademii. 2015. No 3. pp. 3−6.

8. Metallurgicheskij slovar' [Metallurgical dictionary]. URL: https://market.ru/slovar/sharli-printsip.

9. Pat. 2615420 Rossijskaya Federaciya, MPK B 23 H 9/00 (2006.01). Sposob elektroiskrovogo legirovaniya elektricheskih skol'zyashchih kontaktov [Method of electric spark alloying of electric sliding contacts] / Timofeev Yu. S., Petruhin N. S.; zayavitel' i patentoobladatel' OAO akcionernaya nauchno-promyshlennaya kompaniya «Blik» (RU), OOO «Centrnasosservis» (RU). No 2015138183 ; zayavl. 07.09.2015 ; opubl. 15.04.2017, Byul. No 10.

10. Zagrebel'nikova V. A. Analiz apparatov tochnogo vyseva propashnyh kul'tur i vozmozhnost' uvelicheniya resursa detalej vysevayushchego apparata [Analysis of devices for accurate seeding of row crops and the possibility of increasing the resource of parts of the seeding device] // Molodye uchenye – agrarnoj nauke regiona: Materialy Nauchno-prakticheskoj konferencii, posvyashchennoj 85-letiyu Stavropol'skogo gosudarstvennogo agrarnogo universiteta. 2015. Stavropol' : AGRUS, 2015. pp. 43−48.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-40-49

УДК 629.3.014.2.027.5–192

 

MAXIM V. SIDOROV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Kaluga Branch, Russian Federation, Kaluga

PETER I. STEPIN, student

Bauman Moscow State Technical University, Kaluga Branch, Russian Federation, Kaluga

 

EFFECT OF TYRE PRESSURE ON TRACTOR STABILITY

Abstract. Application for tractors of existing methods of providing tire inflation of automobile tires is very limited, since there is no suitable design providing efficiency and expediency of such a system. Undeniable advantages of tire pressure control in the process of tractor driving make this field of research relevant. The article considers the use of mathematical modeling in MathLab Simulink environment and planning experiment to find the optimal values of air pressure changes for different values in the right and left tires when the tractor moves along the supporting surface with a cross slope. The calculation model of the angle of lateral wheel departure and rollover coefficient when a tractor moves on the supporting surface with a cross slope has been developed. Roughness and irregularity of the surface in the given model were not taken into account. When studying the dependence of changes in two parameters: wheel departure angle and stability coefficient on two factors of variation: pressure in left and right tires, the response function has been obtained. By the method of steep ascent the optimum parameters of automatic paging system control are determined, which allow to achieve the minimum angle of wheel steering while maintaining stability on rollover at a transverse surface angle close to the critical one.

Key words: simulation modeling, tractor, tire, pressure, rollover, wheel steering.

 

REFERENCES

1. Kut'kov G. M. Traktory i avtomobili. Teoriya i tekhnologicheskie svojstva [Tractors and automobiles. Theory and technological properties]. M. : KolosS, 2004. 505 p.

2. Kut'kov G. M. Tyagovaya dinamika traktora [Traction dynamics of the tractor]. M. : Mashinostroenie, 1980. 215 p.

3. Pat. 2589764 Rossijskaya Federaciya, MPK B 60 C 23/06 (2006.01), B 60 W 30/02 (2012.01). Avtomaticheskaya sistema regulirovaniya davleniya vozduha v pnevmaticheskih shinah kolesnyh transportnyh sredstv [Automatic system for regulating air pressure in pneumatic tires of wheeled vehicles] / Gorshkov Yu. G., Starunova I. N., Kalugin A. A., Larionova G. A., Bobrov S. V., Baryshnikov S. A.; zayavitel' i patentoobladatel' FGBOU VO «Yuzhno-Ural'skij agrarnyj universitet». No 2015104211 ; zayavl. 09.02.2015 ; opubl. 10.07.2016, Byul. No 19.

4. Pat. 167461 Rossijskaya Federaciya, MPK B 60 G 17/04 (2006.01), B 60 C 23/10 (2006.01). Ustrojstvo podressorivaniya i podkachki koles vezdekhoda [Device cushioning and swap wheels Rover] / Bondarev A. S.; zayavitel' i patentoobladatel' Bondarev Andrej Sergeevich. No 2016134222 ; zayavl. 22.08.2016 ; opubl. 10.01.2017, Byul. No1.

5. Pat. 2586749 Rossijskaya Federaciya, MPK B 60 S 23/00 (2006.01), B 60 T 8/17 (2006.01). Sistema podkachki shin [The inflating system] / Knapke Brajan V., Rasin Llojd G.; zayavitel' i patentoobladatel' Dana Hevi Viikl Sistemz Grup, LLK. No 2014144956 ; zayavl. 04.08.2013 ; opubl. 06.10.2016, Byul. No 16.

6. Zhilejkin M. M., Kotiev G. O., Sarach E. B. Matematicheskie modeli sistem transportnyh sredstv [Mathematical models of vehicle systems: methodological guidelines]: metodicheskie ukazaniya. M. : MGTU imeni N. E. Baumana, 2018. 100 p. URL: https://e.lanbook.com/book/103321.

7. Kolbasov A. F. Nekotorye aktual'nye voprosy raboty avtomobil'noj shiny [Some actual issues of the automobile tire operation] // Fundamental'nye issledovaniya. 2011. No 8-1. pp. 128−130.

8. Godzhaev Z. A., Goncharenko S. V., Valeev D. H., Karabcev V. S. Raschetno-eksperimental'naya ocenka tekhnicheskih harakteristik shin gruzovyh avtomobilej [Calculation and experimental evaluation of technical characteristics of truck tires] // Sel'skohozyajstvennye mashiny i tekhnologii. 2015. No 5. pp. 14−19.

9. Larin V. V. Zavisimosti vertikal'noj deformacii pnevmaticheskih shin [Dependences of vertical deformation of pneumatic tires] // Inzhenernyj zhurnal: nauka i innovacii. 2013. No 12(24). 9 p.

10. Vahrushev S. I. Bezopasnost' dvizheniya bol'shegruznyh transportnyh sredstv [Traffic safety of heavy- duty vehicles] // Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Ohrana okruzhayushchej sredy, transport, bezopasnost' zhiznedeyatel'nosti. 2013. No 1. pp. 35−45.

11. Fil'kin N. M., Shaihov R. F., Buyanov I. P. Teoriya transportnyh i transportno-tekhnologicheskih mashin [Theory of transport and transport-technological machines]: uchebnoe posobie. Perm' : FGBOU VO Permskaya GSKHA, 2016. 230 p.

12. Mihajlin I. A., Shevelev A. S. Sposoby opredeleniya koefficientov uvoda koles transportnyh mashin [Methods of determining the coefficients of withdrawal of wheels of transport machines]. URL: https://docplayer.ru/38880001-Sposoby-opredeleniya-koefficientov-uvoda-koles-transportnyh-mashin.html.

13. GOST R 52899–2007. Shiny pnevmaticheskie dlya gruzovyh mekhanicheskih transportnyh sredstv i pricepov [GOST R 52899–2007. Pneumatic tires for commercial motor vehicles and trailers. Introduction. 2009–01–01]. Vved. 2009−01−01. M. : IPK Izd-vo standartov, 2007. 28 p.

16. Komlackij V. I., Loginov S. V., Komlackij G. V. Planirovanie i organizaciya nauchnyh issledovanij [Planning and organization of scientific research]: uchebnoe posobie. Rostov-na-Donu : Feniks, 2014. 205 p.

19. Adler Yu. P., Markova E. V., Granovskij Yu. V. Planirovanie eksperimenta pri poiske optimal'nyh uslovij [Planning an experiment in the search for optimal conditions]. M. : Nauka, 1976. 278 p.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-50-55

УДК 629.353

 

MAXIM V. SIDOROV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Kaluga Branch, Russian Federation, Kaluga

ROMAN V. SIDORIN, student

Bauman Moscow State Technical University, Kaluga Branch, Russian Federation, Kaluga

 

JUSTIFICATION OF PICKUP TRACTOR WEIGHT BASED ON ROAD ENGAGEMENT AT CHANGE OF LIFTING ANGLE

Abstract. The widespread use of pickup trucks by American farmers as tractors is associated with the large functionality of these machines. There are various methods for connecting cars with trailers and semi-trailers, but the use of such systems for a pickup tractor is very limited, since there is no suitable design. However, the undeniable advantages of using pickup trucks in farms make this area of research relevant. In the article, under the pickup truck, a pickup truck with a seat-coupling device for a trailer with a rotary mechanism is considered. In article the imitating modeling in the environment of MathLab Simulink and planning of an experiment, for identification of optimum values of mass of the pickup tractor from a condition of coupling with the road is used at change of an angle of lead. In the MathLab Simulink environment, a model was created for determining the traction force and grip force during the movement of the pickup truck - tractor for lifting when the condition of adhesion to the road is met. A study of the response function was carried out: the condition of adhesion to the road from two factors of variation: the mass of the pickup tractor and the lifting angle. The two-factor experiment with use of imitating modeling in the environment of MathLab Simulink is made. The steep climbing method determines the optimal parameters of the pickup tractor, which make it possible to ensure the maximum lifting angle while maintaining adhesion to the road. Based on the results of the work, a technical assignment was proposed for the design of an agricultural pickup truck with a trailer turning device that avoids loads from the transported cargo on the rear axle of the car.

Key words: pickup tractor, simulation, experiment planning, two-factor experiment, response function, mass, lifting angle, adhesion condition.

 

REFERENCES

1. Strategiya razvitiya avtomobil'noj promyshlennosti Rossijskoj Federacii na period do 2025 goda [Strategy for the development of the automotive industry of the Russian Federation for the period up to 2025]. URL: http://static.government.ru/media/files/EVXNIplqvhAfF2Ik5t6l6kWrEIH8fc9v.pdf.

2. Pat. No 2258018 Rossijskaya Federaciya, MPK B 62 D 53/08 (2006.01). Pricep [Trailer] / Slivinskij E. V., Sudenkov A. N., Kurasov A. V.; zayavitel' i patentoobladatel' Eleckij gosudarstvennyj universitet imeni I. A. Bunina. No 2004110857/11 ; zayavl. 04.08.2004 ; opubl. 10.08.2005, Byul. No 22.

3. Pat. No 2372242 Rossijskaya Federaciya, MPK B 62 D 53/08 (2006.01), B 62 D 63/08 (2006.01). Pricepnoe transportnoe sredstvo [Tow vehicle] / Slivinskij E. V., Lukashov D. V., Zagryadskaya E. V.; zayavitel' i patentoobladatel' GOU VPO «Eleckij gosudarstvennyj universitet imeni I. A. Bunina». No 2008115822/11 ; zayavl. 21.04.2008 ; opubl. 10.11.2009, Byul. No 31.

4. Pat. No 2465166 Rossijskaya Federaciya, MPK B 62 D 53/08 (2006.01). Pricep [Trailer] / Slivinskij E. V., Plohih S. A., Osipov I. O.; zayavitel' i patentoobladatel' GOU VPO «Eleckij gosudarstvennyj universitet imeni I. A. Bunina». No 2011118193/11 ; zayavl. 05.05.2011 ; opubl. 27.10.2012, Byul. No 30.

5. Povorotnye ustrojstva pricepnyh zven'ev [Rotary devices of trailed links] // Ustrojstvo avtomobilya. URL: https://ustroistvo-avtomobilya.ru/.

6. Skhemy povorotnyh ustrojstv gruzovyh telezhek [Schemes of rotary devices of cargo trucks] // Traktor. URL: http://trac-tor.ru/industrial-carts/povorotnye-ustrojstva-gruzovyh-telezhek.

7. Kut'kov G. M. Traktory i avtomobili. Teoriya i tekhnologicheskie svojstva [Tractors and automobiles. Theory and technological properties]. M. : KolosS, 2004. 505 p.

8. Shestakov I. N. Raschet proektiruemogo dvuhosnogo avtomobil'nogo pricepa s povorotnym krugom na ustojchivost' dvizheniya s primeneniem AVM [Calculation of the projected two-axle automobile trailer with a turning circle on the stability of movement with the use of AVM]: Avtoref. dis. ... kand. tekhn. nauk : 05.05.03 / Shestakov Igor' Nikolaevich. 1984. 187 p.

9. Zhilejkin M. M., Kotiev G. O., Sarach E. B. Matematicheskie modeli sistem transportnyh sredstv [Mathematical models of vehicle systems: methodological guidelines]: metodicheskie ukazaniya. M. : MGTU imeni N. E. Baumana, 2018. 100 p. // Lan': elektronno-bibliotechnaya sistema. URL: https://e.lanbook.com/book/103321.

10. Sidorova A. V., Stepin P. I., Sidorov V. N. Imitacionnoe modelirovanie kolebanij centra mass kolesnoj mashiny s pomoshch'yu programmy Simulink [Simulation modeling of vibrations of the center of mass of a wheeled vehicle using the Simulink program] // Inzhenernyj vestnik Dona. 2020. No 4. URL: ivdon.ru/ ru/magazine/archive/n4y2020/6395.

11. Zaruckij S. A., Vlasenko E. A. Avtomatizaciya analiza dannyh eksperimental'nyh issledovanij [Automation of the analysis of experimental research data] // Inzhenernyj vestnik Dona. 2019. No 8. URL: ivdon.ru/ru/magazine/archive/n1y2018/4753.

12. Adler Yu. P., Markova E. V., Granovskij Yu. V. Planirovanie eksperimenta pri poiske optimal'nyh uslovij [Planning an experiment in the search for optimal conditions]. M. : Nauka, 1976. 278 p.

13. Komlackij V. I., Loginov S. V., Komlackij G. V. Planirovanie i organizaciya nauchnyh issledovanij [Planning and organization of scientific research]: uchebnoe posobie. Rostov-na-Donu : Feniks, 2014. 205 p.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-56-62

УДК 681.586:621.865.8

 

YURY G. ALEYNIKOV, Ph. D. of Engineering Sciences, Applicant

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

YANA G. MITYAGINA, Ph. D. of Engineering Sciences, Deputy Director for OIA, Physics Teacher

Municipal budgetary educational institution secondary school No. 6 named after V. I. Sakhnov

 

FORCE SENSORS IN A CONSTRUCTION OF A WALKING MACHINE WITH DYNAMIC STABILITY

Abstract. The paper describes six-legged dynamic stability walking machine with load cell force sensors. The article proposes an option for improving the robot leg construction by adding more load cells. The walking movement of the leg was simulated and a graph of the sensor movement readings was built. In the course of the research, a new design solution based on the idea of embedding force sensors into the structure of a movable support was tested in practice, and the effectiveness of their use was assessed. The applied several sensors on the supports make it possible to calculate the differential body carrying force of the machine. The proposed design makes it possible to create motion algorithms that can optimally share the loads on the motor drives and select the most effective method and leg move order during motion. The operating mode of the force sensors and the possibility of calculating the dynamically changing legs forces in real time are clearly visible. A promising direction for improving the design of the machine has been substantiated.

Key words: walking machine, robot sensors, load sensors, strain gauges, walking machine motion algorithms, electronics, microcontrollers.

 

REFERENCES

1. Long B., Lu-han Ma, Zhifeng D., Xinsheng Ge Kinematics, Dynamics, and Optimal Control of Pneumatic Hexapod Robot. Hindawi. Mathematical Problems in Engineering Volume 2017, Article ID 6841972. DOI: https://doi.org/10.1155/2017/6841972.

2. Raheem F., Khaleel H. Static Stability Analysis of Hexagonal Hexapod Robot for the Periodic Gaits. IJCCCE Vol.14, No.3, 2014.

3. Sun Y., Liu Y., Zou T., Jin M., Liu H. Design and optimization of a novel six-axis force/ torque sensor for space robot, Measurement. 2015. DOI: http://dx.doi.org/10.1016/j.measurement.2015.01.005.

4. Olaru S. M., Nitulescu M. Modelling of the Hexapod Mobile Robot Leg Using Matlab SimMechanics. In: Borangiu T. (eds) Advances in Robot Design and Intelligent Control. Advances in Intelligent Systems and Computing, 2016. vol 371. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-21290-6_27

5. Kolpashchikov D. et al. Inverse Kinematics for Steerable Concentric Continuum Robots. In: Ronzhin A., Shishlakov V. (eds) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”. Smart Innovation, Systems and Technologies, vol 154. Springer, Singapore. 2020. DOI: https://doi.org/10.1007/978-981-13-9267-2_8.

6. Liu Y., Fan X., Ding L., Wang J., Liu T., Gao H. Fault-Tolerant Tripod Gait Planning and Verification of a Hexapod Robot. Appl. Sci. 2020 DOI: https://doi.org/10.3390/app10082959.

7. Alejnikov Yu. G. Cifrovye tekhnologii dlya robotizirovannyh tekhnicheskih sredstv v sel'skohozyajstvennom proizvodstve na primere shagayushchej mashiny i robota dlya vneseniya trihogrammy v teplice [Digital technologies for robotic technical means in agricultural production on the example of a walking machine and a robot for making a trichogram in a greenhouse] // Innovacii v sel'skom hozyajstve. 2019. No 1 (30). pp. 283–293. URL: http://journal.viesh.ru/wp-content/uploads/2019/04/INNOVSKH-30-2019.pdf.

8. Alejnikov Yu. G., Mityagina Yа. G. Nadezhnoe opredelenie momenta vremeni kasaniya oporoj poverhnosti shagayushchej mashiny [Reliable determination of the moment of time when the support touches the surface of a walking machine] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. No 4. pp. 60−68.

9. Alejnikov Yu. G., Mityagina Ya. G. Sistema upravleniya dvizheniem shagayushchej mashiny [Motion control system of a walking machine] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2018. No 4. pp. 90–95.

10. Didmanidze O. N., Mityagina Ya. G., Alejnikov Yu. G. Princip peremeshcheniya opor shagayushchih mashin vo vremya dvizheniya [The principle of moving the supports of walking machines during movement] // V sb.: Plody i ovoshchi – osnova struktury zdorovogo pitaniya cheloveka. 2012. pp. 381−384.

11. Didmanidze O. N., Mityagina Ya. G., Alejnikov Yu. G. Osobennosti primeneniya datchikov v avtomaticheskoj sisteme dvizheniya shagayushchih mashin [Features of the use of sensors in the automatic movement system of walking machines] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2012. No 5. pp. 72−75.

12. Mahfoudi C., Djouani K., Rechak S., Bouaziz M. Optimal force distribution for the legs of an hexapod robot // IEEE 2003, Conference on Control Application CCA 2003, June 23−25, Instambul Turkey. DOI: https://doi.org/10.1109/CCA.2003.1223515.

13. Xilun D., Alberto Rovetta, JM Zhu, Zhiying Wang Locomotion analysis of hexapod robot // INTECH Open Access Publisher, 2010.

14. Chen X., Watanabe K. Optimal force distribution for the legs of quadruped robot // Machine intelligence and mbotique control, 137−94, 1999.

15. Alejnikov Yu. G. Optimizaciya sensornoj sistemy shagayushchej mashiny s dinamicheskoj ustojchivost'yu [Optimization of the sensor system of a walking machine with dynamic stability] // Agroinzheneriya. 2020. No 4(98). pp. 60−65.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-63-72

УДК 629.35–592.001.13

 

SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Associate Professor

OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor, Academician of the RAS

ARTYOMBEK S. GUZALOV, Teaching Assistant

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 

DESIGN OF A STAND FOR DIAGNOSTICS OF THE STATE OF THE BRAKE SYSTEM OF THE KAMAZ-65117 CAR

Abstract. Improving the active safety of motor vehicles (PBX) is one of the most pressing problems of the modern automotive industry. Evidence of this is the presence of a whole set of international regulatory documents on the UNECE Regulations that establish the level of structural safety of wheeled vehicles. In accordance with the technical requirements, within the framework of this work, the necessary data on the standard database of centralized maintenance of KAMAZ-6520 cars are presented. The research and analysis of the technological equipment widespread in the Russian Federation – brake stands are carried out. The review of the existing designs is carried out, comparison of advantages and disadvantages of various options is carried out. The article offers a stand for diagnosing the brake system of the car, which is located in the D-1 zone. The design scheme of the device is defined, the required basic characteristics are set, and the scheme and calculations for improving the universal brake stand for cars are presented, the main parts and components are designed for strength, the power elements and their drive are selected. The stand is designed to monitor the braking performance and stability of vehicles during braking, including cars, trucks, buses, as well as multi-axle and all-wheel drive vehicles with an axial load of up to 15,000 kg.

Key words: vehicle diagnostics, design calculations, brake stand, control, strain gauge, sensor.

REFERENCES

1. Tojgambaev S. K., Evgrafov V. A., Didmanidze O. N. Ekonomiko-matematicheskaya model' optimizacii i kriteriev optimal'nosti pri komplektovanii parka mashin proizvodstvennyh organizacij s uchetom mezhkhozyajstvennogo sotrudnichestva [Economic and mathematical model of optimization and optimality criteria for completing the fleet of machines of production organizations taking into account inter-economic cooperation] // Pedagog habarshysy. 2019. No 21. pp. 10−13.

2. Leonov O. A., Shkaruba N. Zh. Raschet zatrat na kontrol' tekhnologicheskih processov remontnogo proizvodstva [Calculation of costs for control of technological processes of repair production] // Vestnik FGOU VPO MGAU. 2004. No 5. pp. 75−77.

3. Golinickij P. V., Tojgambaev S. K. Izmerenie i kontrol' detalej transportnyh i transportno-tekhnologicheskih kompleksov [Measurement and control of details of transport and transport-technological complexes]. M. : Sputnik+, 2018. 154 p.

4. Abdulmazhidov H. A., Matveev A. S. Kompleksnoe proektirovanie i prochnostnye raschety konstrukcii mashin prirodoobustrojstva v sisteme INVENTOR PRO [Complex design and strength calculations of the construction of nature management machines in the INVENTOR PRO system] // Vestnik FGOU VPO MGAU imeni V. P. Goryachkina. 2016. No 2 (72). pp. 40−46.

5. Tojgambaev S. K. Ispytaniya dvigatelej na special'nyh stendah [Engine tests on special stands] // Aktual'nye problemy sovremennoj nauki. 2015. No 5 (84). pp. 163−167.

6. Shnyrev A. P., Tojgambaev S. K. Osnovy nadezhnosti transportnyh i tekhnologicheskih mashin [Fundamentals of reliability of transport and technological machines]: Uchebnoe posobie dlya studentov tekhnicheskih vuzov UMO MGUP. M. : Sputnik +, 2006. 132 p.

7. Evgrafov V. A. Primenenie metodov imitacionnogo modelirovaniya pri optimizacii sostava tekhnologicheskih kompleksov v prirodoobustrojstve [Application of simulation modeling methods in optimizing the composition of technological complexes in nature management] / V. A. Evgrafov, A. I. Novichenko, I. M. Podhvatilin, V. I. Gornostaev, A. V. Shkilenko // Obrazovanie. Nauka. Nauchnye kadry. 2013. No 3. pp. 136−141.

8. Leonov O. A., Shkaruba N. Zh., Vergazova Yu. G., Antonova U. Yu. Metrologicheskoe obespechenie kontrolya gil'z cilindrov pri remonte dizelej [Metrological support of cylinder liner control during diesel engine repair] // Vestnik Baranovichskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki. 2018. No 6. pp. 104−109.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-73-79

УДК 338(4/9)(574)

 

SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 

ASSIGNMENT OF TYPES AND DETERMINATION OF THE SCOPE OF REPAIR WORK FOR THE CENTRAL REPAIR SHOP OF FARMS IN KAZAKHSTAN

Abstract. The types of repair work carried out on the basis of the central repair shop are considered. For the development of the annual program of the repair shop, the average annual number of repairs, complex types of maintenance for all machines of the farm is calculated. The total amount of work of the workshop is determined by the labor costs, which are calculated for a calendar year. The article lists the components of labor costs. An example of calculations in relation to the DT-75 tractor is given, for other types of equipment in this article-only calculation formulas. In detail the distribution of work stations of the repair shop, the determination of the time of the workshop, the work plan workshop, the calculation of the number of workers of other teams, to determine the duration of repairs for each group of machines. It is proposed to build graphs based on calculations, which will allow you to draw conclusions more clearly and accurately, organize the workshop's activities and prevent significant fluctuations and errors in the work of the central repair shop during the year.

Key words: central repair shop, labor costs, machine, repair, unit, number of workers, duration of repair, preparation of a work plan.

REFERENCES

1. Apatenko A. S., Vladimirova N. I. Analiz sistem remontno-profilakticheskogo obsluzhivaniya tekhnologicheskih mashin [Analysis of systems of repair and preventive maintenance of technological machines] // Vestnik FGOU VPO «Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina». 2013. No 1 (57). pp. 72−76.

2. Sevryugina N. S., Prohorova E. V., Dikevich A. V. Modelirovanie neshtatnyh situacij pri ocenke nadezhnosti spectekhniki [Modeling of emergency situations in assessing the reliability of special equipment] // Vestnik Har'kovskogo nacional'nogo avtomobil'no-dorozhnogo universiteta. 2012. No 57. pp. 90−96.

3. Novichenko A. I., Podhvatilin I. M. Ocenka effektivnosti funkcionirovaniya sredstv tekhnologicheskogo osnashcheniya APK [Evaluation of the efficiency of the functioning of the means of technological equipment of the agro-industrial complex] // Prirodoobustrojstvo. 2013. No 2. pp. 92−96.

4. Tojgambaev S. K. Stend dlya obkatki i ispytaniya dvigatelej [Stand for running-in and testing of engines] // Aktual'nye problemy sovremennoj nauki. 2014. No 5 (78). pp. 146−149.

5. Tojgambaev S. K., Evgrafov V. A. Opredelenie trudoemkosti diagnostirovaniya avtomobilej [Determination of the labor intensity of vehicle diagnostics] // Estestvennye i tekhnicheskie nauki. 2019. No 12 (138). pp. 74.

6. Tojgambaev S. K. Ispytaniya dvigatelej na special'nyh stendah [Tests of engines on special stands] // Aktual'nye problemy sovremennoj nauki. 2015. No 5 (84). pp. 163–167.

7. Tojgambaev S. K., Evgrafov V. A. Vybor kriteriev optimizacii pri reshenii zadach po komplektovaniyu parka mashin proizvodstvennyh sel'skohozyajstvennyh organizacij [The choice of optimization criteria in solving problems of completing the fleet of machines of industrial agricultural organizations] // Doklady TSKHA: Sbornik statej. Vyp. 291. Ch. II. M. : RGAU−MSKHA. 2019. 674 p.

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-80-88

УДК 621.783.72.001.891

 

KONSTANTIN O. SOKOLOV, Ph. D. of Engineering Sciences, Associate Professor

SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 

RESEARCH METHOD FOR BAKING BRONZE POWDERS BY CENTRIFUGAL ELECTRIC ARC METHOD

Abstract. The paper presents the main points of the research methodology of bronze powders baking when restoring the serviceability of sliding bearings of machines. The methodology of planning experiments, determining the strategy of research of technological modes of centrifugal electric arc caking of bronze powders is proposed. The general methodology of experimental research consists of several main parts. The first part describes the methodology of choosing fluxes for the composition of the charge on the basis of bronze powders; the second part presents the methods of planning and conducting the experiment to determine the optimum technological regimes of bronze bushings restoration; the third part presents the equipment and materials used to conduct the experiment; the fourth - the methods of determining a number of physical and mechanical properties of coatings received by centrifugal electric arc baking of bronze powder, as well as the methods of determining the chemical composition of the coatings; the fifth - mathematical processing of experimental data. As a result of analysis of physical and mechanical properties of the method of centrifugal electric arc caking of bronze powders the main factors of activation of the process have been determined: temperature activation (accelerated heating by indirect electric arc); force activation (provided by the action of centrifugal forces); chemical activation (introduction of special additives - fluxes which decrease oxidation and destroy oxide films).

Key words: experiment planning, flux selection, bronze powder baking, electric arc heating, sliding bearing restoration, centrifugal baking, physical and mechanical properties.

REFERENCES

1. Aleshin N. P., Chernyshev G. G. Svarka. Rezka. Kontrol' [Welding. Cutting. Control]: spravochnik. V 2-h t. T. 1 / pod obshch. red. N. P. Aleshina, G. G. Chernysheva. M. : Mashinostroenie, 2004. 624 p.

2. Svarka. Rezka. Kontrol' [Welding. Cutting. Control]: spravochnik. V 2-h t. T. 2 / N. P. Aleshin, G. G. Chernyshev, A. A. Akulov i dr. M. : Mashinostroenie, 2004. 480 p.

3. Anur'ev V. I. Spravochnik konstruktora-mashinostroitelya [The Anura VI Reference designer-mechanical engineer]. M. : Mashinostroenie, 2006. 936 p.

4. Apatenko A. S. Razrabotka tekhnologicheskih processov vosstanovleniya iznoshennyh detalej mashin prirodoobustrojstva [Development of technological processes for restoring worn-out parts of nature management machines]. M. , 2013. 61 p.

5. Gornostaev V. I., Novichenko A. I., Podhvatilin I. M. Sistemnyj podhod v issledovanii tekhnologicheskih processov v sfere mekhanizacii sel'skogo hozyajstva [System approach in the study of technological processes in the field of agricultural mechanization] / V sb.: Materialy mezhdunarodnoj nauchnoj konferencii molodyh uchyonyh i specialistov, posvyashchyonnoj 150-letiyu A. V. Leontovicha: Sbornik statej. 2019. pp. 494−496.

6. Sevryugina N. S., Golubenko N. V. Metod ocenki dispersnoj sistemy «Poverhnost' treniya – motornoe maslo» v dvigatelyah SMD [Method of evaluation of the dispersed system "Friction surface-motor oil" in SMD engines] / V sb.: Innovacionnye materialy, tekhnologii i oborudovanie dlya stroitel'stva sovremennyh transportnyh sooruzhenij / Belgorodskij gosudarstvennyj tekhnologicheskij universitet imeni V. G. Shuhova, 2013. pp. 226−230.

7. Silin A. A. Trenie i ego rol' v razvitii tekhniki [Friction and its role in the development of technology]. M. : Nauka, 1987. 192 p.

8. Tojgambaev S. K., Evgrafov V. A. Primenenie elektrodugovogo nagreva i centrobezhnoj zalivki pri remonte detalej mashin [The use of electric arc heating and centrifugal filling in the repair of machine parts] // International journal of professional science. 2019. No 10. pp. 89−97.

9. Tojgambaev S. K., Evgrafov V. A. Tekhnologicheskij process izgotovleniya vtulok gidrocilindra [Technological process of manufacturing hydraulic cylinder bushings] // Estestvennye i tekhnicheskie nauki. 2018. No 8. pp. 148−153.

10. Tojgambaev S. K. Primenenie termodiffuzionnyh processov dlya uprochneniya i vosstanovleniya detalej sel'skohozyajstvennoj tekhniki [Application of thermodiffusion processes for strengthening and restoring parts of agricultural machinery]: Monografiya. M. : FGOU VPO MGUP, 2011. 154 p.

11. Kuksenova L. I. Iznosostojkost' konstrukcionnyh materialov [Wear Resistance of structural materials]. M. : MGTU imeni N. E. Baumana, 2011. 238 p.

12. Shnyrev A. P., Tojgambaev S. K. Ocenka dolgovechnosti vosstanovlennyh bronzovyh detalej transportnyh i tekhnologicheskih mashin [Evaluation of the durability of restored bronze parts of transport and technological machines] / V sb.: Ekologicheskie problemy vodnogo hozyajstva i melioracii: materialy nauchno-tekhnicheskoj konferencii. 2000. p. 4.

________________________________________________________________________________________ 

 

 

_________________________________________________________________________________________________________________________________ 

 

 

 

ENERGY

 

 

DOI: 10.34286/1995-4646-2020-74-6-89-97

УДК 621.31

 

IURII P. PROKAZOV, APEC Engineer, Electrical Engineer

LLC "Renaissance Development Russia", Russian Federation, Moscow

 

CONSIDERATION OF OPTIMIZATION PROBLEMS IN THE DEVELOPMENT OF SCHEDULES FOR SCHEDULED PREVENTIVE REPAIRS IN THE ELECTRIC POWER INDUSTRY

Abstract. The purpose of the article is to develop an optimal strategy for planning scheduled preventive repairs and maintenance of power equipment. Both regulated and deregulated energy systems are considered. Attention is paid to important features based on world practice. A brief description of the work of the energy complex is presented, the main activities and types of organization of the energy industry are described, and the problems of optimizing the planning of maintenance of electrical networks that arise in regulated and deregulated environments are considered. The reliability of power plants and transmission lines in the electric power industry is crucial for the operation of the electric grid. Therefore, timely maintenance, and scheduling of preventive maintenance plays an important role in reducing the number and frequency of hardware failures, minimize logistics costs, increase the reliability of power supply, preventing costly production stops. The definition of time intervals for preventive maintenance of equipment, taking into account the financial feasibility and reliability, is considered. Currently, the literature contains a significant amount of information aimed at improving the efficiency of decision- making when planning maintenance of power units and power transmission lines. The existing methods of solving the problems that arise when planning the withdrawal of electric power equipment for repair are presented, and the results of the study are summarized. The approaches of mathematical programming for solving problems of the equipment repair management system are analyzed, where the most common method − the Benders decomposition, in which one complex problem is divided into subtasks that are easier to solve, was adopted as the basis. Based on the application of the genetic algorithm (GA), solutions to issues related to making the most effective decisions regarding the planning of repair work are presented. Other metaheuristic methods, such as particle swarm optimization (ORF), as well as randomly and heuristically generated ones, are presented, conclusions are drawn, and the most optimal methods are proposed. The influence of the growth of renewable energy sources in the energy industry and their stochastic nature of electricity generation on the planning of preventive maintenance and maintenance of power equipment is considered.

Key words: reliability of power supply, maintenance, power system management, repair of electric power equipment, energy efficiency, energy market, regulated and deregulated power systems.

REFERENCES

1. Abirami M., Ganesan S., Subramanian S., Anandhakumar R. Source and transmission line maintenance outage scheduling in a power system using teaching learning based optimization algorithm. Applied Soft Computing, 2016. 21:72–83.

2. Al-Khamis T., Vemuri S., Lemonidis L., Yellen J. Unit maintenance scheduling with fuel constraints. IEEE Transactions on Power Systems, 2015. 7(2):933–939.

3. Anghinolfi D., Gambardella L., Montemanni R. A matheuristic algorithm for a large-scale energy management problem. In Van Lirkov I., Margenov S., and Wa ́sniewsk J., editors, Large-Scale Scientific Computing, 2018. volume 7116, рр. 173–181. Springer Berlin Heidelberg.

4. Badri A., Niazi A. Preventive generation maintenance scheduling considering system reliability and energy purchase in restructured power systems. Journal of Basic and Applied Scientific Research, 2018. 2(12):12773–12786.

5. Barot H., Bhattacharya K. Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy. IEEE Transactions on Power Systems, 2018. 23(4):1871–1882.

6. Baskar S., Subbara P., Rao M., Tamilselvi S. Genetic algorithms solution to generator maintenance scheduling with modified genetic operators. Generation, Transmission and Distribution, IEE Proceedings, 2017. 150(1):56–60.

7. Billinton R., Abdulwhab A. (). Short-term generating unit maintenance scheduling in a deregulated power system using a probabilistic approach. Generation, Transmission and Distribution, IEE Proceedings, 2018. 150(4).

8. Bisanovic S., Hajro M., Dlakic M. A profit-based maintenance scheduling of thermal power units in electricity market. International Journal of Electrical and Electronics Engineering, 2016. 5:156–164.

9. Brandt F., Bauer R., V ̈olker M., Cardeneo A. A constraint programming-based approach to a large-scale energy management problem with varied constraints. Journal of Scheduling, 2015. 16(6):629–648.

10. Buljubasic M., Gavranovic H. Orchestrating constrained programming and local search to solve a large scale energy management problem. In Proceedings of the Federated Conference on Computer Science and Information Systems, 2015. pр. 371–378.

11. Benders J. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 1962. 4(1):238–252.

12. Burke E., Smith A. Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE Transactions on Power Systems, 2016. 15.

13. Canto S. Application of Benders’ decomposition to power plant preventive maintenance scheduling. European Journal of Operational Research, 2018. 184:759–777.

14. Canto S., Rubio-Romero J. A model for the preventive maintenance scheduling of power plants including wind farms. Reliability Engineering & System Safety, 2018. 119:67–75.

15. Charest M., Ferland J. Preventive maintenance scheduling of power generating units. Annals of Operations Research, 41:185–206. Chattopadhyay, D. (2017). A practical maintenance scheduling program mathematical model and case study. IEEE Transactions on Power Systems, 2018. 13(4):1475–1480.

16. Chattopadhyay D. A game theoretic model for strategic maintenance and dispatch decisions. IEEE Transactions on Power Systems, 2004a, 19(4):2014–2021.

17. Chattopadhyay D. Life-cycle maintenance management of generating units in a competitive environment. IEEE Transactions on Power Systems, 2004b. 19(2):1181–1189. 22

18. Chen L., Toyoda J. Optimal generating unit maintenance scheduling for multi-area system with network constraints. IEEE Transactions on Power Systems, 2015. 6(3):1168–1174.

19. Conejo A., Garcia-Bertrand R., Diaz-Salazar M. Generation maintenance scheduling in restructured power systems. IEEE Transactions on Power Systems, 2017. 20(2):984–992.

20. Dahal K. A review of maintenance scheduling approaches in deregulated power systems. In Proceedings of the International Conference on Power Systems (ICPS 2004), Kathmandu, Nepal, 2015. рр. 565–570.

21. Dahal K., Al-Arfaj K., Paudyal K. Modelling generator maintenance scheduling costs in deregulated power markets. European Journal of Operational Research, 2015. 240(2):551–561.

22. Dahal K., Aldridge C., McDonald J. Generator maintenance scheduling using a genetic algorithm with a fuzzy evaluation function. Fuzzy Sets and Systems, 2017. 102(1):21–29.

23. Doyle E. On the application of stochastic models in nuclear power plant maintenance. European Journal of Operational Research, 2015. 154(3):673–690.

24. Ekpenyong U., Zhang J., Xia X. An improved robust model for generator maintenance scheduling. Electric Power Systems Research, 2015. 92:29–36.

25. El-Amin I., Duffuaa S., Abbas M. A tabu search algorithm for maintenance scheduling of generating units. Electric Power Systems Research, 2015. 54:91–99.

 

________________________________________________________________________________________ 

 

 

DOI: 10.34286/1995-4646-2020-75-6-98-105

УДК 621.315.17

 

MARINA I. GORBUNOVA, Ph. D. of Pedagogic Sciences, Associate Professor

The State Fire Academy of the Ministry of Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, Russian Federation, Moscow

 

FORMATION OF THE STRUCTURE OF CONTINUOUS ENERGY CONSUMPTION IN MEGACITIES

Abstract. The reliability of power supply to consumers in the electric power system (EES) is considered in the form of two components – structural and functional reliability. The decomposition of each of these components is carried out. The concept of dynamic reliability is considered, the indicators of which characterize the possibility of failure of electric receivers in case of short-term power supply failures. In the study of reliability, depending on the purpose and conditions of use of the object, single and complex reliability indicators are used. Despite the growing number of energy sources based on renewable energy sources (RES), the volume of which in some developed camp ahead of the volume of conventional generation, issues of reliability of supply of alternative and renewable energy resources remain poorly understood. Currently, there is a gap in the application of the laws of probability theory and random processes to calculate the reliability of electricity supply in a power system with renewable energy sources of various kinds. It is concluded that the growth of the generated power of wind power plants (components of wind and solar power plants) in the morning hours, coinciding with the load surges in the power system, can be used to ensure reliable power supply to consumers with the electric power system. Compensation for evening load surges is possible using mainly the power generated by wind farms. The further development of renewable energy sources and the corresponding calculations of the ratio of the power generated by them and consumed in the power system will significantly reduce the number of starts of thermal and hydroelectric power plants, reduce the consumption of energy resources, primarily hydrocarbons, and reduce thermal emissions into the environment.

Key words: growth of power consumption, electric energy, flexibility of the power system, power plants, the magnitude of the jump.

REFERENCES

1. Nadezhnost' liberalizovannyh sistem energetiki [Reliability of liberalized energy systems] / V. A. Barinov, V. A. Savel'ev, M. G. Suharev i dr. Novosibirsk : Nauka, 2004. 333 p.

2. Fokin Yu. A., Vanin A. S., Osipov YA. N., Kulyabin Yu. V. Cifrovaya model' avarijnyh rezhimov elektroenergeticheskoj sistemy dlya povysheniya nadezhnosti [Digital model of emergency modes of the electric power system for increasing reliability] // Metodicheskie voprosy issledovaniya nadezhnosti bol'shih sistem energetiki: Vyp. 63. Problemy nadezhnosti sistem energetiki v rynochnyh usloviyah. Baku : AzNIiPIIE, 2013. pp. 285–292.

3. Fokin Yu. A., Kulyabin Yu. V., Osipov Ya. N. Analiz i sintez skhem sistem elektrosnabzheniya s cel'yu obespecheniya elektromagnitnoj – elektromekhanicheskoj sostavlyayushchej nadezhnosti (nadezhnost' v millisekundnom i sekundnom diapazone) [Analysis and synthesis of schemes of power supply systems for the purpose of ensuring the electromagnetic-electromechanical component of reliability (reliability in the millisecond and second range)] // Metodicheskie voprosy issledovaniya nadezhnosti bol'shih sistem energetiki. Vyp. 58. Irkutsk−Vologda : ISEM SO RAN, 2007. pp. 299−307.

4. Chen X., Wang C., Jiang L., Li H., Wang J., He X. Pilot-scale catalytic ozonation pretreatment for improving the biodegradability of fixed-bed coal gasification wastewater. Process Safety and Environmental Protection, 2021. 148, 13–19. https://doi.org/10.1016/j.psep.2020.09.056.

5. Li C., Zhang X., Wang K., Su F., Chen C.-M., Liu F., ... Ma Y. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry, 54, 2021. 352–367. https://doi.org/10.1016/j.jechem.2020.05.058.

6. Ye L., Lu Y. Intensifying fine-grained fluorite flotation process with a combination of in-situ modification and liquid-gas microdispersion. Separation and Purification Technology, 2021. 257. https://doi.org/10.1016/j.seppur.2020.117982.

7. Zhao M., Zhang X., Tran K., Wen H., Xiang Y., Cao Z., ... Koonen A. M. J. Integrated Tunable Phase Shifter Based on Energy-Conserved Phase Amplification and Its Application for RF-OAM Generation. IEEE Journal of Selected Topics in Quantum Electronics, 2021. 27(2). https://doi.org/10.1109/JSTQE.2020.3014807.

8. Diaz-Sainz G., Alvarez-Guerra M., Avila-Bolivar B., Solla-Gullon J., Montiel V., Irabien A. Improving trade-offs in the figures of merit of gas-phase single-pass continuous CO<inf>2</ inf> electrocatalytic reduction to formate. Chemical Engineering Journal, 2021. 405. https://doi.org/10.1016/j.cej.2020.126965.

9. Wei F., Liao D., Lin Y., Hu C., Ju J., Chen Y., Feng D. Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO<inf>2</inf>-NTs/PbO<inf>2</inf> electrode. Separation and Purification Technology, 2021. 258. https://doi.org/10.1016/j.seppur.2020.118056.

10. Zhang C., Li Y., Wang C., Zheng X. Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C<inf>3</inf>N<inf>4</inf>-based metal-free visible-light-enabled photocatalytic disinfection. Science of the Total Environment, 2021. 755. https://doi.org/10.1016/j.scitotenv.2020.142588.

11. Yan Y., Zhao T., Guo H., Xu F., Zhang L., Yang Z., Ran J. Experimental Investigation on Mixed Combustion Characteristics of Coal, Tobacco Straw, and Cinder in an Energy-Saving Bake Process. Journal of Energy Resources Technology, Transactions of the ASME, 2021. 143(2). https://doi.org/10.1115/1.4047763.

12. Choi O. K., Seo J. H., Kim G. S., Hendren Z., Kim G. D., Kim D., Lee J. W. Non-membrane solvent extraction desalination (SED) technology using solubility-switchable amine. Journal of Hazardous Materials, 2021. 403. https://doi.org/10.1016/j.jhazmat.2020.123636.

13. Wu, X., & Mu, X. (2021). Practical scaled consensus for nonlinear multiagent systems with input time delay via a new distributed integral-type event-triggered scheme. Nonlinear Analysis: Hybrid Systems, 40. https://doi.org/10.1016/j.nahs.2020.100995

14. Semenyutina A., Svintsov I., Huzhahmetova A., Semenyutina V. Regulation of increase of biodiversity of woody plants in protective forest plantings of the Volga region. World Ecology Journal, 2018. 8(2), 46−59. https://doi.org/https://doi.org/10.25726/NM.2018.2.2.005.

15. Piscitelli M. S., Brandi S., Capozzoli A., Xiao F. A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings. Building Simulation, 14(1), 2021. 131–147. https://doi.org/10.1007/s12273-020-0650-1.

16. Zhao H., Li Y., Song Q., Liu S., Ma L., Shu X. Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three iron ores: Effect of iron ore types on the product distribution, carbon-deposited iron ore reactivity and its mechanism. Fuel, 2021. 286. https://doi.org/10.1016/j.fuel.2020.119398.

17. Cao Y., Soares C., Padoin N., Noel T. Gas bubbles have controversial effects on Taylor flow electrochemistry. Chemical Engineering Journal, 2021. 406. https://doi.org/10.1016/j.cej.2020.126811.

18. Zhao M., Zhang X., Tran K., Wen H., Xiang Y., Cao Z., ... Koonen A. M. J. Integrated Tunable Phase Shifter Based on Energy-Conserved Phase Amplification and Its Application for RF-OAM Generation. IEEE Journal of Selected Topics in Quantum Electronics, 2021. 27(2). https://doi.org/10.1109/JSTQE.2020.3014807.

 

________________________________________________________________________________________