THE INTERNATIONAL
TECHNICAL-ECONOMIC
JOURNAL

Contents

ENERGY

 

Zhdaneev O. V., Seregina A. A.

Vectors of brics technological cooperation in the fuel and energy sector

 
7

Eremeev M. A., Somoilov A. А., Kislova E. А.

Intelligent engineering of electric energy storage systems in the Russian Federation: fundamental

 
18

Burmeyster M. V., Eremeev M. A., Bulatov R. V.

Multi-criteria analysis methodology of the scheme and program for the prospective  development of the electric power industry for interconnected power systems

 
26

Bulatov R. V., Eremeev M. A., Burmeyster M. V.

The estimation of prospective source of electrical power installed capacity under isolated energy systems conditions

 
37

Mestnikov N. P., Vasilyev P. F., Hassan Al'hadzh Foad

Development of hybrid power supply systems for power supply of remote consumers in North  and Arctic conditions

 
47

Vasilyev P. F., Mestnikov N. P.

Research of the effect of the sharply continental climate of Yakutia on the functioning of solar panels

 
57

Rudi D. Yu., Vishnyagov M. G., Ruppel A. A.

Computer program for determining the conductive low-frequency electromagnetic interference  by the coefficient of the nth harmonic component of the voltage

 
65

 

PROCESSES AND MACHINES OF AGROENGINEERING SYSTEMS

 

Startsev A. V., Romanov S. V., Romanova G. M.

Results of experimental studies to determine the coefficient of resistance to self-movement of a machine-tractor unit

 
79

Anisimov P. N., Kamenskih A. D., Ostashenkov A. P.

Mathematical modeling of the reliability of a pv installation for an apiary

 
86

Orlov B. N., Karapetyan M. A., Orlov N. B.

Investigation of the loss of working capacity due to wear and tear during the operation  of working elements of machines and equipment

 
93

Novikov E. V., Guzalov A. S.

Ice operating methods using fuel-hydrogen mixtures


100

Tojgambaev S. K.

Design of the site of technical service of diesel fuel equipment

 
108

 

 

ABSTRACTS OF ARTICLES INDEXED IN AGRIS

 

Abstracts

115

 

 

_________________________________________________________________________________________________________________________________ 

 

 

 

ENERGY

 

 

 

 

DOI: 10.34286/1995-4646-2021-76-1-7-17

УДК 621.31:334.101.23-48.87

 

OLEG V. ZHDANEEV, Ph. D. of Physico-Mathematical Sciences, Head of the Directorate of Technologies in the Fuel and Energy Sector

ANTONINA A. SEREGINA, Ph. D. of Political Sciences, Project Director

Federal State Budgetary Institution "Russian Energy Agency" of the Ministry of Energy of the Russian Federation, Moscow, Russian Federation

 

VECTORS OF BRICS TECHNOLOGICAL COOPERATION IN THE FUEL AND ENERGY SECTOR (PART 1)

Abstract. The article examines promising areas of cooperation between the BRICS countries in the field of fuel and energy complex from the point of view of their importance for maintaining the countries ' energy sovereignty and achieving the common goals of the integration association. The key competencies and vectors of cooperation between the participating countries in the fuel and energy complex are identified, and specific proposals are presented to bring the ISTC in the energy sector to a new level, indicating priority areas for the development, implementation and exchange of pioneer technologies in the field of traditional and renewable energy. The article aims to propose an action program or general model solutions for the fuel and energy complex of the BRICS partner countries. In addition, the "Technology Roadmap" was analyzed. China's Wind Energy Development Roadmap for 2050" by Jacobson, Delucchi, and Bauer (Jacobson et al., 2017). As part of these studies, a roadmap was developed for 139 countries to transition to renewable energy sources by 2050. The econometric method allowed the authors to make a qualitative assessment of the use of renewable energy sources to solve problems such as climate change and environmental pollution.

Key words: BRICS, fuel and energy complex, international scientific and technical cooperation, energy policy.

 

REFERENCES

1. Otchet po energeticheskim tekhnologiyam BRIKS, 2020 god (2020 g.). ISBN 978-5-6045331-1-6. Citirovanie otcheta: Platforma sotrudnichestva BRICS Energy Research. URL: https://minenergo.gov.ru/sites/default/files/07/20/18364/BRICS_Energy_Report_rus_10_11_2020_F.pdf.

2. Prognoz razvitiya energetiki mira i Rossii. 2019. URL: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Forecast_2019-02_Rus.pdf.

3. OESR / Mezhdunarodnoe energeticheskoe agentstvo. Dorozhnaya karta tekhnologij. Dorozhnaya karta razvitiya vetroenergetiki Kitaya na 2050 god (2011). URL: https://www.china.tu-berlin.de/fileadmin/fg57/SS_2012/Umwelt/IEAchina_wind_2050.pdf.

4. Belongo Elize Ishelok BRIKS i ekonomicheskoe razvitie: mul'tidisciplinarnaya perspektiva, ISBN 978-93-89631-62-3. URL: https://doi.org/10.34256/iorip2028.

5. 7-ya cel' OON v oblasti ustojchivogo razvitiya: obespechit' dostup k nedorogoj, nadezhnoj, ustojchivoj i sovremennoj energii dlya vsekh. URL: https://sdgs.un.org/goals/goal7.

6. Sovmestnoe zayavlenie glav gosudarstv i pravitel'stv stran-chlenov Vtorogo sammita BRIK ot 15 aprelya 2010 goda. URL: http://www.brics.mid.ru/brics.nsf/WEBdocBric/8B8AE397B54634E7C325780900468661.

7. Skolkovskij nauchno-tekhnicheskij institut. VII vstrecha ministrov nauki, tekhnologij i innovacij stran BRIKS. 2019. URL: https://www.skoltech.ru/2019/09/vii-vstrecha-ministrov-nauki-tehnologij-i-innovatsij-stran-uchastnits-briks/.

8. I−XI sammity stran BRIKS (2009−2019). URL: http://www.nkibrics.ru/pages/summit-docs.

9. 2-j Sammit glav gosudarstv i pravitel'stv stran BRIK: sovmestnoe zayavlenie. Braziliya (15 aprelya 2010 g.). URL: http://www.brics.utoronto.ca/docs/100415-leaders.html.

10. Delijskaya deklaraciya. (2012) N'yu-Deli, Indiya. 29 marta. URL: http://news.kremlin.ru/ref_notes/1189.

11. Deklaraciya Tekvini Durban, Yuzhnaya Afrika (27 marta 2013 g.). URL: http://www.brics.utoronto.ca/docs/130327-statement.html.

12. Ryazanova M. O. Energeticheskoe vzaimodejstvie v ramkah BRIKS. 2014. URL: https://cyberleninka.ru/article/n/energeticheskoe-vzaimodeystvie-v-ramkah-briks.

13. 6-j Sammit BRIKS: Fortalezskaya deklaraciya (15 iyulya 2014 goda), Fortaleza, Braziliya. URL: http://www.brics.utoronto.ca/docs/140715-leaders.htm.

14. Strategiya ekonomicheskogo sotrudnichestva BRIKS ot 9 iyulya 2015 goda. URL: http://www.brics.utoronto.ca/docs/150709-partnership-strategy-ru.pdf.

15. Otchet o rezul'tatah predsedatel'stva Rossijskoj Federacii v mezhgosudarstvennom ob"edinenii BRIKS (2015−2016), p. 38.

16. Memorandum o vzaimoponimanii v oblasti energosberezheniya i energoeffektivnosti. URL: http://www.nkibrics.ru/posts/show/569f96c46272693cc5160000.

17. BRIKS Lidery Syamyn'skoj deklaracii (4 sentyabrya 2017 goda), Syamyn', Kitaj. URL: http://www.brics.utoronto.ca/docs/170904-xiamen.html.

18. 10-j Sammit BRIKS Johannesburgskaya deklaraciya (2018), Yuzhnaya Afrika, 26 iyulya. URL: http://www.brics.utoronto.ca/docs/180726-johannesburg.html.

19. Ryazanova M. O. Faktory mnogostoronnego energeticheskogo sotrudnichestva stran BRIKS. 2019. URL: https://www.elibrary.ru/item.asp?id=38532599.

20. Soglashenie o Novom banke razvitiya (15 iyulya 2014 goda), Fortaleza, Braziliya. URL: http://www.brics.utoronto.ca/docs/140715-bank.html.

21. Provincial'nyj gazovyj holding Czyansi, Ltd (JPNGHCO), (2018). Proekt razvitiya sistemy transportirovki prirodnogo gaza v Czyansi. URL: https://www.ndb.int/jiangxi-natural-gas-transmission-system-development-project/.

22. OOO «Fuczyan' Gruppa po investiciyam i razvitiyu» (2016−2020), proekt stroitel'stva vetryanoj elektrostancii v zalive Putyan' Pinhaj. URL: https://www.ndb.int/pinghai-china/.

23. Sel'skaya korporaciya elektrifikacii (SKE), REC Limited. (2019). REC proekt razvitiya sektora vozobnovlyaemoj energii. URL: https://www.ndb.int/rec-renewable-energy-sector-development-project/.

24. Eskom Holdings Gosudarstvennaya kompaniya s ogranichennoj otvetstvennost'yu (2016). Proektnoe finansirovanie dlya Eskom. URL: https://www.ndb.int/eskom-south-africa/.

25. Korporaciya promyshlennogo razvitiya Yuzhnoj Afriki Limited (IDC) (2019). Proekt razvitiya vozobnovlyaemogo sektora energii. URL: https://www.ndb.int/renewable-energy-sector-development-project/.

26. Nacional'nyj Bank ekonomicheskogo i social'nogo razvitiya (2017). Finansirovanie vozobnovlya- emyh energeticheskih proektov i associirovannoj transmissii (BNDES). URL: https://www.ndb.int/ bndes-brazil/.

27. Nord Gidro Belyj Porog (2016−2021). DVA KREDITA V EABR I MIB DLYA NORD-GIDRO. URL: https://www.ndb.int/edbiib-russia/.

28. Central'noe dispetcherskoe upravlenie toplivno-energeticheskogo kompleksa: Cifrovizaciya toplivo-energeticheskogo kompleksa Rossii, 2018. URL: http://docs.cntd.ru/document/561726289.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-18-25

УДК 621.31:004.896(470)

 

MIKHAIL A. EREMEEV, Master’s Degree

ANDREY А. SOMOILOV, Master’s Degree

ELIZAVETA А. KISLOVA, Bachelor’s degree

National Research University Moscow Power Engineering Institute, Russian Federation, Moscow

 

INTELLIGENT ENGINEERING OF ELECTRIC ENERGY STORAGE SYSTEMS IN THE RUSSIAN FEDERATION: FUNDAMENTAL

Abstract. Electric energy storage systems (EESS) are not widely used in Russia. This article points out the benefits of using these systems. This article examines the implementation of intelligent power storage systems and their operation in the conditions of the Russian Federation electricity market. The authors considered the principles of operation and technical peculiarities of operation of intelligent systems of electric power storage, their classification and peculiarities of external grid energy supply by electrical energy storage systems. The classification of EESS into intelligent and non-intelligent is provided. The main characteristics of intelligent EESS are given. The main problems of introducing intelligent power storage systems were highlighted. The study was based on the methods of statistical, historical, comparative, logical, economic-mathematical and system analysis, which made it possible to propose the introduction of intelligent power storage systems as one of the possible ways to improve the quality and reliability of the electric power system. Reasons for the use of EESS in modern power industry are given The main stages of EESS project management in the Russian Federation are outlined, which include and describe pre-project planning, justification, economic component, tariffs, design, manufacture and commissioning, operation in general terms, processing and disposal.

Key words: electric energy storage devices, electric power systems, intelligent systems, phases of project management.

 

REFERENCES

1. Zhikharev A., Posypanko N., Baranov N., Kostyuk R. Energy storage systems in Russia. Injection of stable growing Vygon Consulting, 2020, р. 54.

2. Volkov A., Shtein A., Zharkov M., Klassen S. Comparative analysis of power generation systems for renewable energy using electric energy storage devices 2019. IEEE, рр. 429-433.

3. Sakamoto O., Nagayama K., Osawa H. Effect of voltage-stabillizing control with flywheel energy storage system on stable operation of induction machines in a small isolated power system, IEEE, 2016.

4. Gusev Y., Subbotin P. Using battery energy storage systems for load balancing and reactive power compensation distribution grids, IEEE 2019.

5. Basso T. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid, National Renewable Energy Laboratory, 2014.

6. Kostyuk R. Savings on accumulation: the main directions of integration of EES into the power grid complex, RUM vol. 4(594),| 2020.

7. Gonzalez-Longatt F., Rueda Jose J. Advanced Smart Grid Functionalities Based on PowerFactory, Springer International Publishing, 2018, р. 371 . ISBN: 978-3-319-50531-2.

8. Altshuller G. S., Rodman S. The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity, Technical Innovation Center, Inc., 1999, р. 312.

9. Nadeem F., Hussain S. M. S., Tiwari P. K., Goswami A. K., Ustun T. S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems, in IEEE Access, vol. 7, pp. 4555−4585, 2019, doi: 10.1109/ACCESS.2018.2888497.

10. Palmer G., Floyd J. Energy Storage and Civilization: A Systems Approach, 2020, р. 186. 10.1007/978- 3-030-33093-4.

11. Osika L. K. Engineering of intellectual energy system objects. Design. Construction. Business and management. Practical guide. MPEI, 2014. р. 780.

12. Stoft S. Power System Economics: Designing Markets for Electricity, 2002. р. 496. ISBN: 9780471150404.

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-26-36

УДК 620.9

 

MAXIM V. BURMEYSTER, Assistant

MIKHAIL A. EREMEEV, Master’s Degree

RAMIS V. BULATOV, Postgraduate

National Research University Moscow Power Engineering Institute, Russian Federation, Moscow

 

THE ESTIMATION OF PROSPECTIVE SOURCE OF ELECTRICAL POWER INSTALLED CAPACITY UNDER ISOLATED ENERGY SYSTEMS CONDITIONS

Abstract. The problem of isolated consumers energy supplying is actual in the Russian Federation. Today there are big area without any access to centralized power supply. The solution of problem of isolated consumers energy supplying could be distributed generation. Renewable energy sources or fossil fuel plants can be used as sources of energy under these conditions. In order to calculate prospective source of electrical power total and unit installed capacity there are several methods were developed. These methods are provided in the article. Nevertheless, there are no methods for calculating fixed at the legislative level under isolated energy systems conditions. This article provides an overview of existing methods for calculating the installed capacity of generating units at power plants based on fossil fuels in isolated power systems, among which the most expedient in terms of accounting for various operating modes of the power center is indicated. In addition, a comparison was made of gas piston, gas turbine and diesel units according to the conditions of the chosen method, as well as a technical and economic analysis. As an example, a power center is taken that operates in isolation from the power system with consumers of 1, 2 and 3 categories of reliability.

Key words: power supply, isolated consumers, distributed generation, renewable sources of energy, gas piston units, gas turbine units, diesel power plants.

 

REFERENCES

1. Poslanie Prezidenta RF Federal'nomu sobraniyu. Onlajn-reportazh. URL: http://ria.ru.

2. Artem'ev I. B., Sinel'nikov A. M. Vybor generiruyushchego oborudovaniya dlya ob"ektov raspredelennoj generacii [The choice of generating equipment for distributed generation facilities] // Turbiny i Dizeli. 2015. No 2. pp. 10–13.

3. Ershov S. V., Smolin S. O. Perspektivnye skhemy vetrodizel'nyh ustanovok [Perspektivnye schemy vetrodizelnykh ustanovleniy] // Elektroenergetika. Using Lithium-Ionic batteries in electrical lightning systems. 2018. pp. 49–53.

4. Shuplecov A. F., Perelygin A. I. Strategiya effektivnoj proizvodstvenno-ekonomicheskoj deyatel'nosti po ispol'zovaniyu poputnogo neftyanogo gaza v Vostochnoj Sibiri [Strategy of efficient production and economic activity on the use of associated petroleum gas in Eastern Siberia] // Baikal Research Journal. 2018. T. 9, No 1. pp. 48–57.

5. Vybor kolichestva elektroagregatov elektrostancij OAO «Gazprom»: STO 2-6.2-208–2008 [The choice of the number of: portable power stations OJSC Gazprom: one HUNDRED 2-6.2-208-2008]. M. : OOO «IRC Gazprom», 2008. 30 p.

6. Mini-TEC s kotel'noj bez illyuzij. URL: https://meteoenergetic.ru/mini-tec-s-kotelnoy.

7. Udincev D. N., Shvedov G. V., Shoshin M. E. Vybor chisla i moshchnosti generiruyushchego oborudovaniya energocentrov v avtonomnyh sistemah elektrosnabzheniya i v sistemah s raspredelennoj generaciej [Selection of the number and capacity of generating equipment of power centers in autonomous power supply systems and in systems with distributed generation] // Energetik. 2020. No 2. pp. 37−43.

8. Gazoporshnevye ustanovki rossijskogo proizvodstva. URL: https://www.ooopkt.ru/elektrostantsii/rus-gpu.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-37-46

УДК 621.311:006.354

 

RAMIS V. BULATOV, Postgraduate

MIKHAIL A. EREMEEV, Master’s Degree

MAXIM V. BURMEYSTER, Assistant

National Research University Moscow Power Engineering Institute, Russian Federation, Moscow

 

MULTI-CRITERIA ANALYSIS METHODOLOGY OF THE SCHEME AND PROGRAM FOR THE PROSPECTIVE DEVELOPMENT OF THE ELECTRIC POWER INDUSTRY FOR INTERCONNECTED POWER SYSTEMS

Abstract. The article examines the schemes and programs for the prospective development of the electric power industry of the united energy system (UES) of the South, explains the goals and reasons for their creation. The analysis of the results of planning the future development of regional energy systems of the UES of the South for the period from 2016 to 2020 was carried out and the criteria for assessing their effectiveness were selected. The methodology of the analysis of the scheme and the program of the perspective development of the electric power industry has been developed. The analysis of the implementation of investment programs of large power grid companies in the region for compliance with the approved programs for the development of the power industry has been carried out. It has been established that many subjects do not approach with the proper level of responsibility to the development of schemes and programs for the long-term development of the electric power industry, and thus, it makes difficult to attract investments in the construction of power facilities. The information base of the study consists of regulatory legal acts, regulations, methodological documents and materials of state authorities of the federal and regional levels, statistical data of the Federal State Statistics Service, reports, reviews of the Russian Ministry of Energy, materials published in periodicals, scientific literature and the Internet, developments of domestic and foreign scientists, as well as the results obtained by a team of authors in the process of research.

Key words: unified energy system, united energy system, region energy system, energy system development management, power supply reliability.

 

REFERENCES

1. Sistemnyj operator Edinoj energeticheskoj sistemy: EES 2018. URL: https://so-ups.ru/index.php?id=ees.

2. Dzhangirov V. A., Barinov V. A. Principy sovmestnoj raboty energokompanij v usloviyah elektroenergeticheskogo rynka [Principles of joint work of power companies in the conditions of the electric power market // Elektrichestvo. 1995. No 3. pp. 2−11.

3. D'yakov A. F., Semenov V. A., Morozkin V. P. Ispol'zovanie osnovnyh elektricheskih setej pri rynochnyh otnosheniyah. Opyt SSHA i stran Zapadnoj Evropy [The use of basic electrical networks in market relations. The experience of the USA and the countries of Western Europe] // Energetik. 1994. No 4. pp. 4−6.

4. Liu J., Gao J., Wang Y. Research on the principles and strategies of power grid investment under the new situation of power industry reform, 2017 Chinese Automation Congress (CAC), Jinan, 2017, pp. 6274−6278, doi: 10.1109/CAC.2017.8243908.

5. Liao Z., Chen C., Zang X. Research on comparison of power grid planning program based on life cycle cost, 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, China, 2016, pp. 1−5, doi: 10.1109/ICHVE.2016.7800919.

6. Postanovlenie ot 17 oktyabrya 2009 goda No 823 «O skhemah i programmah perspektivnogo razvitiya elektroenergetiki». URL: https://base.garant.ru/196473/.

7. Metodicheskie rekomendacii «Po razrabotke Skhemy i programmy razvitiya elektroenergetiki sub"ekta Rossijskoj Federacii na 5-letnij period». p. 2. URL: https://docplayer.ru/27750643-Metodicheskie-rekomendacii-po-razrabotke-shemy-i-programmy-razvitiya-elektroenergetiki-subekta-rossiyskoy-federacii-na-5-letniy-period.html.

8. Nigmatulin B. Analiz prognozov elektropotrebleniya v razlichnyh programmah Minenergo Rossii [Analysis of forecasts of power consumption in various programs of the Ministry of Energy of Russia] // Energorynok. URL: http://www.ipem.ru/news/publications/665.html.

9. Pazderin A. B. Problema modelirovaniya raspredeleniya potokov elektricheskoj energii v seti [The problem of modeling the distribution of electric energy flows in the network] // Elektrichestvo. 2004. No 10. pp. 2−4.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-47-56

УДК 620.92(98/99)

 

NIKOLAY P. MESTNIKOV, Postgraduate

PAVEL F. VASILYEV, Ph. D. of Engineering Sciences

North-Eastern Federal University, Russian Federation, Sakha Republic, Yakutsk The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciencesl V. P. Larionov Institute of Physical-Technical Problems of the North of Siberian Branch of the Russian Academy of Sciences, Russian Federation, Yakutsk

AL'HADZH FOAD HASSAN, Postgraduate

Kazan State Power Engineering University, Respublika Tatarstan, Kazan Lebanese International University, Lebanese, Beirut

 

DEVELOPMENT OF HYBRID POWER SUPPLY SYSTEMS FOR POWER SUPPLY OF REMOTE CONSUMERS IN NORTH AND ARCTIC CONDITIONS

Abstract. In this paper, the authors present a study aimed at studying and analyzing hybrid power supply systems for powering remote and stationary electricity consumers located in the North and the Arctic based on the parallel operation of traditional and renewable energy sources, presenting graphical interpretations of the dependence of the electric power characteristics of a low-power hybrid power plant on external parameters, such as: wind speed, solar illumination, area of illuminated area of photovoltaic panel, inclination angle of photovoltaic panel relative to ground surface, etc. Currently, electricity supply to remote consumers of the North and the Arctic is carried out through the operation of low-power diesel generators, where the cost of generating electricity ranges from 40 rubles per 1 kWh, which is an energy and financially inefficient source of energy. In this regard, the only rationalization solution to the above problem is the introduction of renewable energy facilities, for which, in turn, it is necessary to provide accurate mathematical modeling for preliminary design and simulation of operational processes. Therefore, the main value of this article is the development of mathematical programs for calculating and analyzing the operation of hybrid power supply systems in the environment of the North and the Arctic. Keywords: wind generator, solar panel, measuring equipment, hybrid power, mathematical modeling, North, Arctic.

Key words: wind generator, solar panel, measuring equipment, hybrid energy, mathematical modeling, North, Arctic.

 

REFERENCES

1. Skhema i programma razvitiya elektroenergetiki Respubliki Saha (Yakutiya) na 2020−2024 gody. URL: http://publication.pravo.gov.ru/Document/View/1400202005070002.

2. Korporativnyj sajt AO «Sahaenergo». URL: https://www.sakhaenergo.ru/about.

3. Miroshnichenko A. A., Solomin E. V., Gordievskij E. M., Kulganatov A. Z., Stanchauskas V. I. Analiz strategij upravleniya gibridnym energokompleksom na baze vozobnovlyaemyh istochnikov energii [Analysis of strategies for managing a hybrid energy complex based on renewable energy sources] // Vestnik Moskovskogo energeticheskogo instituta vestnik MEI. 2020. No 5. pp. 67−78.

4. Dolgopol T. L., Sichevskij A. S. Ispol'zovanie avtonomnyh gibridnyh enegoustanovok v sistemah elektrosnabzheniya udalennyh poselkov Dal'nego Vostoka [The use of autonomous hybrid power plants in power supply systems of remote settlements of the Far East] // Materialy Vserossijskoj nauchno- prakticheskoj konferencii «Problemy i perspektivy razvitiya elektroenergetiki i elektrotekhniki» / Kazanskij gosudarstvennyj energeticheskij universitet. Kazan' , 2019. pp. 465−469.

5. Randy T Simmons, Lofthouse J., Ryan M. Yonk Reliability of renewable energy: solar. Institute of Political Economy (IPE) at Utah State University. 2016. V. 1.

6. Szulc-Wronska A., Tomaszewska B. Investigation of use small wind turbines under local wind conditions in Rabka-Zdroj. 6th International Conference – Renewable Energy Sources (ICoRES 2019). 09 March 2020.

7. Sowa S. Improving the energy efficiency of lighting systems by the use of solar radiation. 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018). 03 December 2018.

8. Kundas S. P., Poznyak S. S., Shenec L. V. Vozobnovlyaemye istochniki energii [Renewable energy sources]. Minsk : MGEU imeni A. D. Saharova, 2009. pp. 390.

9. Tihonov A. V. Povyshenie effektivnosti kombinirovannyh sistem avtonomnogo elektrosnabzheniya na osnove vozobnovlyaemyh istochnikov energii [Improving the efficiency of combined systems of autonomous power supply based on renewable energy sources]: avtoref. dis. ... kand. tekhn. nauk : 05.14.08 / Tihonov Anton Valentinovich. M. , 2013.

10. Kuzyk B. Partnerstvo gosudarstva i biznesa: perspektivy v sfere vozobnovlyaemyh istochnikov energii [Partnership of the state and business: prospects in the field of renewable energy sources] // Problemy teorii i praktiki upravleniya. 2008. No 7. pp. 19.

11. Sher'yazov. S. K., Shelubaev M. V. Ispol'zovanie vetroustanovki v sisteme elektrosnabzheniya [The use of wind turbines in the power supply system] // Vestnik KrasGAU. 2010. No 4. pp. 210−213.

12. Voronkov E. N. Solnechnaya energetika mozhet stat' odnim iz klyuchevyh faktorov formirovaniya novogo tekhnologicheskogo cikla [Solar energy can become one of the key factors in the formation of a new technological cycle] / V sb.: Promyshlennaya energetika. 2017. S. 53.

13. Solnechnaya energiya v sel'skom hozyajstve. URL: http://solarfox-energy.com/primenenie-solnechnoj-energii-v-selskom-hozyajstve/.

14. Povnyj A. Kak ustroeny i rabotayut solnechnye batarei. URL: https://recyclemag.ru/article/kak-ustroeny-i-rabotajut-solnechnye-batarei.

15. He Kaj, Su Lin', Voronkov E. N. Vklad vozobnovlyaemoj energetiki Kitaya v formirovanie global'nogo tekhnologicheskogo cikla [The contribution of China's renewable energy to the formation of the global technological cycle] // Vestnik MEI. 2018. No 6. pp. 43−50.

16. Mestnikov N. P. Razrabotka decentralizovannoj sistemy elektrosnabzheniya dlya fermerskih hozyajstv federal'nogo proekta «Dal'nevostochnyj gektar» na osnove ispol'zovaniya dizel'noj i solnechnoj energetiki s superkondensatorami [Development of a decentralized power supply system for farms of the federal project "Far Eastern hectare" based on the use of diesel and solar energy with supercapacitors] // Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii «N34 Nauka i obrazovanie na sovremennom etape razvitiya: opyt, problemy i puti ih resheniya» CH. II. Voronezh : FGBOU VO Voronezhskij GAU, 2018. pp. 495.

17. Mestnikov N. P. Razrabotka decentralizovannoj sistemy elektrosnabzheniya malochislennyh naselennyh punktov Respubliki Saha (Yakutiya) s ispol'zovaniem gibridnyh stancij s solnechnymi panelyami i superkondensatorami [Razrabotka decentralizirovannoy sistemy elektrosnabzheniya malochislennykh localities of the Republic of Sakha (Yakutia) with the use of hybrid stations with solar panels and supercapacitors] // Materialy IX Mezhdunarodnoj molodezhnoj nauchno-tekhnicheskoj konferencii. V 3-h tomah. Otvetstvennyj redaktor E. V. SHamsutdinov. Kazanskij gosudarstvennyj energeticheskij universitet. 2018. pp. 390.

18. Kalimullin L. V., Levchenko D. K., Smirnova Yu. B., Tuzikova E. S. Prioritetnye napravleniya, klyuchevye tekhnologii i scenarii razvitiya sistem nakopleniya energii [Priority directions, key technologies and scenarios for the development of energy storage systems] // Vestnik IGEU. 2019. Vyp. 1. pp. 42−54. 19. Energetika. Nastoyashchee. Budushchee. URL: http://energetika.in.ua/ru/books/book-5/part-1/section-2/2-8.

19. Energetika. Nastoyashchee. Budushchee. URL: http://energetika.in.ua/ru/books/book-5/part-1/section-2/2-8.

20. Nurullin E. G. Osnovy nauchnyh issledovanij [Fundamentals of scientific research]: Uchebnoe posobie. Kazan' : Kazanskij GAU, 2017. pp. 108.

21. Obzor razvitiya vetroenergetiki v Rossii. URL: https://www.atomic-energy.ru/news/2020/03/06/102001.

22. Korporativnyj sajt Rosatom. URL: https://rosatom.ru/production/vetroenergetika/.

23. Kak razvivaetsya solnechnaya energetika v Rossii. URL: https://recyclemag.ru/article/razvivaetsya-solnechnaya-energetika-rossii.

24. Perspektivy razvitiya krupnomasshtabnoj solnechnoj energetiki. URL: https://www.eprussia.ru/epr/54/3519.htm.

25. Vozobnovlyaemaya («al'ternativnaya») energetika. URL: http://government.ru/rugovclassifier/565/events/.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-57-64

УДК 621.472:551.58(571.56)

 

PAVEL F. VASILYEV, Ph. D. of Engineering Sciences

NIKOLAY P. MESTNIKOV, Postgraduate

North-Eastern Federal University, Russian Federation, Sakha Republic, Yakutsk The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciencesl V. P. Larionov Institute of Physical-Technical Problems of the North of Siberian Branch of the Russian Academy of Sciences, Russian Federation, Yakutsk

 

RESEARCH OF THE EFFECT OF THE SHARPLY CONTINENTAL CLIMATE OF YAKUTIA ON THE FUNCTIONING OF SOLAR PANELS

Abstract. In this paper, the authors present a study aimed at studying and analyzing the influence of the sharply continental climate of the Yakutia on the electric power parameters of single-crystal and polycrystalline solar panels, presenting the results of experimental studies in the form of graphical interpretations and patterns of current and voltage strength from external parameters for the period January-February, such as: time, luminous flux, temperature and weather type. Currently, against the backdrop of worldwide progress in the requirements of the Paris Climate Agreement of 22.04.2016, the introduction of renewable energy sources in the electricity systems of countries is one of the priorities of generating enterprises, taking into account the reduction in the combustion of solid and liquid fuels. In this regard, the generating company of the northern part of the Yakutia Sakhaenergo JSC operates about 24 solar and 2 wind power plants, but it is important to note that these facilities are practically not functioning for the period December-January due to low solar activity. However, it should be emphasized that the generation efficiency of the above facilities remains relatively low during the summer period of operation. It should be emphasized that in this enterprise there are no technical reports and research work to study the impact of the sharply continental climate of Yakutia on the functioning of solar panels, given that during the search on the basis of the E-library, similar scientific and technical articles and works were not found. Therefore, the main value of this article is a study of the influence of the sharply continental climate of Yakutia on the functioning of solar panels.

Key words: temperature, dust content, solar panel, measuring equipment, modeling, Yakutia.

 

REFERENCES

1. Angga Romana, Eko Adhi Setiawan Comparison of two calculation methods for designing the solar electric power system for small islands. The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018). 26 November 2018.

2. Charyev Ya., Hodzhanepesov K. Vliyaniya parametrov atmosfery na energeticheskie harakteristiki kremnievoj solnechnoj batarei [Influence of atmospheric parameters on the energy characteristics of a silicon solar cell] // Innovacii v sel'skom hozyajstve. 2016. No 5. pp. 214−218.

3. Miroshnichenko A. A., Solomin E. V., Gordievskij E. M., Kulganatov A. Z., Stanchauskas V. I. Analiz strategij upravleniya gibridnym energokompleksom na baze vozobnovlyaemyh istochnikov energii [Analysis of strategies for managing a hybrid energy complex based on renewable energy sources] // Vestnik Moskovskogo energeticheskogo instituta (Vestnik MEI). 2020. No 5. pp. 67−78.

4. Dolgopol T. L., Sichevskij A. S. Ispol'zovanie avtonomnyh gibridnyh enegoustanovok v sistemah elektrosnabzheniya udalennyh poselkov Dal'nego Vostoka [The use of autonomous hybrid power plants in power supply systems of remote settlements of the Far East] // Materialy Vserossijskoj nauchno-prakticheskoj konferencii «Problemy i perspektivy razvitiya elektroenergetiki i elektrotekhniki». Kazanskij gosudarstvennyj energeticheskij universitet. Kazan', 2019. pp. 465−469.

5. Randy T Simmons, Lofthouse J., Ryan M. Yonk Reliability of renewable energy: solar. Institute of Political Economy (IPE) at Utah State University. 2016. V.1.

6. Sowa S. Improving the energy efficiency of lighting systems by the use of solar radiation. 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018). 03 December 2018.

7. Kundas S. P., Poznyak S. S., Shenec L. V. Vozobnovlyaemye istochniki energii [Renewable energy sources]. Minsk : MGEU imeni A. D. Saharova, 2009. pp. 390.

8. Tihonov A. V. Povyshenie effektivnosti kombinirovannyh sistem avtonomnogo elektrosnabzheniya na osnove vozobnovlyaemyh istochnikov energii [Improving the efficiency of combined systems of autonomous power supply based on renewable energy sources]: avtoref. dis. ... kand. tekhn. nauk : 05.14.08 / Tihonov Anton Valentinovich. M. , 2013.

9. Kuzyk B. Partnerstvo gosudarstva i biznesa: perspektivy v sfere vozobnovlyaemyh istochnikov energii [Partnership of the state and business: prospects in the field of renewable energy sources] // Problemy teorii i praktiki upravleniya. 2008. No 7. pp. 19.

10. Voronkov E. N. Solnechnaya energetika mozhet stat' odnim iz klyuchevyh faktorov formirovaniya novogo tekhnologicheskogo cikla [Solar energy can become one of the key factors in the formation of a new technological cycle] / V sb.: Promyshlennaya energetika. 2017. pp. 53.

11. Mestnikov N. P. Razrabotka decentralizovannoj sistemy elektrosnabzheniya dlya fermerskih hozyajstv [Development of a decentralized power supply system for farms] // Materialy mezhdunarodnoj konferencii «N34 Nauka i obrazovanie na sovremennom etape razvitiya: opyt, problemy i puti ih resheniya». Ch. II. Voronezh : FGBOU VO Voronezhskij GAU, 2018. pp. 495.Mestnikov N. P. Razrabotka decentralizovannoj sistemy elektrosnabzheniya dlya fermerskih hozyajstv [Development of a decentralized power supply system for farms] // Materialy mezhdunarodnoj konferencii «N34 Nauka i obrazovanie na sovremennom etape razvitiya: opyt, problemy i puti ih resheniya». Ch. II. Voronezh : FGBOU VO Voronezhskij GAU, 2018. pp. 495.

12. Mestnikov N. P. Razrabotka decentralizovannoj sistemy elektrosnabzheniya malochislennyh naselennyh punktov [Development of a decentralized power supply system for small settlements] // Materialy IX Mezhdunarodnoj molodezhnoj konferencii. V 3-h tomah. Otvetstvennyj redaktor E. V. Shamsutdinov. Kazan' : KGEU, 2018. pp. 390.

13. Kalimullin L. V., Levchenko D. K., Smirnova Yu. B., Tuzikova E. S. Prioritetnye napravleniya, klyuchevye tekhnologii i scenarii razvitiya sistem nakopleniya energii [Priority directions, key technologies and scenarios for the development of energy storage systems] // Vestnik IGEU. 2019. No 1. pp. 42−54.

14. Nurullin E. G. Osnovy nauchnyh issledovanij [Fundamentals of scientific research]: Uchebnoe posobie. Kazan' : Kazanskij GAU, 2017. pp. 108.

15. Skhema i programma razvitiya elektroenergetiki Respubliki Saha (Yakutiya) na 2020−2024 gody. URL: http://publication.pravo.gov.ru/Document/View/1400202005070002.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-65-78

УДК 621.391.823:004

 

DMITRY YU. RUDI, Postgraduate

Novosibirsk State Academy of Water Transport, Russian Federation, Moscow

MIKHAIL G. VISHNYAGOV, Ph. D. of Engineering Sciences, Associate Professor

ALEXANDR A. RUPPEL, Ph. D. of Engineering Sciences, Professor

Omsk Institute of Water Transport, Branch, Siberian State University water transport, Russian Federation, Omsk

 

COMPUTER PROGRAM FOR DETERMINING THE CONDUCTIVE LOW-FREQUENCY ELECTROMAGNETIC INTERFERENCE BY THE COEFFICIENT OF THE NTH HARMONIC COMPONENT OF THE VOLTAGE

Abstract. Industrial electric networks of enterprises for certain reasons are characterized by low quality of electric energy due to the presence of higher harmonics in them. In this regard, conductive low-frequency electromagnetic interference (EMI) occurs. EMF reduction is one of the key objectives of electromagnetic compatibility (EMC). The problem of EMC is extensive and the problem of solving various problems, one of which is the determination of conductive low-frequency EMF by the coefficient of the nth harmonic component of the voltage (KU(n)), is not solved. Therefore, the purpose of this work is to develop an algorithm for determining the conductive low-frequency EMF by KU(n). This algorithm allows us to scientifically evaluate the electromagnetic environment (EMR) in electrical networks. The developed algorithm is based on the requirements of the international state standard GOST 32144-2013. Using this algorithm, a computer program has been developed that allows automated calculation of EMO parameters (distribution parameters, the probability of their occurrence). Moreover, it performs an automated calculation of such parameters of the distribution of KU(n) values as the mathematical expectation and the standard deviation. The program also performs an automated calculation of the probability of the output of KU(n) for the normalized values and the probability of the appearance of a conductive low-frequency EMF for KU(n) for the billing period. It is also capable of visualizing data arrays that are obtained in various experimental studies, using an oscillogram and a histogram. The algorithm and the computer program are used for the methodological approach to the development of the concept of improving the quality of electrical energy. The calculated data of the concept is based on the analytical and numerical aspects of computer research. To ensure this concept, it is necessary to have reliable information about EMO in electrical networks, which allows the developed algorithm and computer program to do.

Key words: computer program, power quality, electromagnetic interference, coefficient of the nth harmonic component of the voltage.

 

REFERENCES

1. Danilov G. A., Denchik Yu. M., Ivanov M. N., Sitnikov G. V. Povyshenie kachestva funkcionirovaniya linij elektroperedachi [Improving the quality of functioning of power transmission lines] / Pod red. V. P. Gorelova, V. G. Sal'nikova. Novosibirsk : Novosibirskaya gosudarstvennaya akademiya vodnogo transporta, 2013. 559 p.

2. Rudi D. Yu., Antonov A. I., Vishnyagov M. G. [i dr.] Issledovanie vysshih garmonik v elektricheskih setyah nizkogo napryazheniya [Investigation of higher harmonics in low-voltage electrical networks] // Omskij nauchnyj vestnik. 2018. No 6 (162). pp. 119−125.

3. Antonov A. I., Vishnyagov M. G., Denchik Yu. M. [i dr.] Analiz opredeleniya konduktivnoj nizkochastotnoj pomekhi po koefficientu nesinusoidal'nosti krivoj napryazheniya [Analysis of the determination of conductive low-frequency interference by the coefficient of non-sinusoidality of the voltage curve] // Omskij nauchnyj vestnik. 2015. No 3 (143). pp. 244−247.

4. Denchik Yu. M., Ivanova E. V., Ivanov D. M. Problemy innovacionnogo razvitiya elektricheskih setej mestorozhdenij nefti kak receptorov na baze koncepcii Smart Grid [Problems of innovative development of electric networks of oil fields as receptors based on the concept of Smart Grid] // Vestnik kibernetiki. 2018. No 1 (29). pp. 86−101.

5. GOST 32144−2013. Mezhgosudarstvennyj standart. Elektricheskaya energiya. Sovmestimost' tekhnicheskih sredstv elektromagnitnaya. Normy kachestva elektricheskoj energii v sistemah elektrosnabzheniya obshchego naznacheniya [GOST 32144-2013. Interstate standard. Electrical energy. Compatibility of technical means is electromagnetic. Standards for the quality of electrical energy in general-purpose power supply systems]. Vzamen GOST 13109−97. Vved. 2014−07−01. M. : Standartinform, 2014. 20 p.

6. Hacevskij K. V., Denchik Yu. M., Kleutin V. I. [i dr.] Problemy kachestva elektroenergii v sistemah elektrosnabzheniya [Problems of electricity quality in power supply systems] // Omskij nauchnyj vestnik. 2012. No 2 (110). pp. 212–214.

7. Stepanov V. M., Bazyl' I. M. Vliyanie vysshih garmonik v sistemah elektrosnabzheniya predpriyatiya na poteri elektricheskoj energii [Influence of higher harmonics in enterprise power supply systems on electric energy losses] // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2013. No 12-2. pp. 27–31.

8. Ivanova E. V. Konduktivnye elektromagnitnye pomekhi v elektroenergeticheskih sistemah [Conductive electromagnetic interference in electric power systems] / pod red. V. P. Gorelova, N. N. Lizaleka. Novosibirsk : Novosibirskaya gosudarstvennaya akademiya vodnogo transporta, 2006. 432 p.

9. 9. Denchik Yu. M. Opredelenie parametrov polya sobytij v elektricheskih setyah pri slozhnoj elektromagnitnoj obstanovki [Determination of the parameters of the event field in electric networks under complex electromagnetic conditions] // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2010. No 2. pp. 418−424.

10. Denchik Yu. M. Metodika opredeleniya konduktivnoj nizkochastotnoj elektromagnitnoj pomekhi v elektricheskoj seti pri garmonicheskom vozdejstvii [Metodika opredeleniya konductivnoy nizkofrequen- cynoy emagneticheskoy pomeshki v elektricheskoy seti pri harmonicheskom vozdeystvii] // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2013. No 2. pp. 218−221.

11. Ivanova Yu. M. Metodologiya issledovaniya konduktivnyh elektromagnitnyh pomekh, rasprostranyayushchihsya po setyam [Metodologiya issledovaniya konductivnykh emagneticheskikh pomoshchikh, propagatyaschikhsya po setyam] // Konduktivnye elektromagnitnye pomekhi v elektroenergeticheskih sistemah / pod red. V. P. Gorelova, N. N. Lizaleka. Novosibirsk : NGAVT, 2006. 432 p. pp. 52–56.

12. Antonov A. I., Vishnyagov M. G., Kleutin V. I., Ruppel' A. A. Veroyatnost' i process vozniknoveniya konduktivnoj elektromagnitnoj pomekhi v elektroenergeticheskih sistemah [Probability and process of occurrence of conductive electromagnetic interference in electric power systems] // Sbornik nauchnyh trudov Omskogo instituta vodnogo transporta (filial) FGBOU VO SGUVT. Omsk, 2015. pp. 4−8.

13. Ivanova E. V., Kulikov S. G. Opredelenie konduktivnoj elektromagnitnoj pomekhi po koefficientu iskazheniya sinusoidal'nosti krivoj napryazheniya v seti obshchego naznacheniya [Determination of conductive electromagnetic interference by the coefficient of distortion of the sinusoidal voltage curve in a general-purpose network] // Transportnoe delo Rossii. 2006. No 11-1. pp. 42−44.

14. Pugachev B. C. Teoriya veroyatnostej i matematicheskoj statistiki [Theory of probability and mathematical statistics]. M. : Nauka, 1979. 478 p.

15. Rudi D. Yu., Gorelov S. V., Vishnyagov M. G. Algoritm opredeleniya konduktivnoj nizkochastotnoj elektromagnitnoj pomekhi po koefficientu n-j garmonicheskoj sostavlyayushchej napryazheniya [Algorithm for determining the conductive low-frequency electromagnetic interference by the coefficient of the nth harmonic component of the voltage] // Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informacionnye tekhnologii, sistemy upravleniya. 2020. No 33. pp. 177−194.

16. Algoritm opredeleniya konduktivnoj nizkochastotnoj elektromagnitnoj pomekhi po koefficientu n-oj garmonicheskoj sostavlyayushchej napryazheniya [The algorithm for determining the conductive low- frequency electromagnetic interference by the coefficient of the nth harmonic component of the voltage] / A. I. Antonov, YU. M. Denchik, D. A. Zubanov [i dr.]. No 24171; zayavl. 15.07.2019 g.; opubl. Hroniki ob"edinennogo fonda elektronnyh resursov «Nauka i obrazovanie». 2019. No 8 (123). pp. 28.

17. Zubanov D. A., Kleutin V. I., Sidorenko A. A. [i dr.] Obrabotka rezul'tatov eksperimental'nyh issledovanij pokazatelej kachestva elektricheskoj energii sredstvami programmy LabVieW [Processing of the results of experimental studies of indicators of quality of electric energy by means of the program LabVieW] // Sb. nauch. tr. OIVT. 2012. No 10. pp. 118−122.

18. Denchik Yu. M., Zubanov D. A., Ruppel' E. Yu. Razrabotka programmnogo obespecheniya dlya obrabotki rezul'tatov eksperimental'nyh issledovanij ustanovivshegosya otkloneniya napryazheniya sredstvami LabVieW [Development of software for processing the results of experimental studies of the steady- state voltage deviation by means of LabVIEW] // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2013. No 1. pp. 362−365.

19. Rudi D. Yu., Gorelov S. V., Ruppel' A. A. Issledovanie vysshih garmonik v rabochej elektricheskoj seti nizkogo napryazheniya [Investigation of higher harmonics in a low-voltage working electrical network] / V sb.: Aktual'nye voprosy professional'nogo obrazovaniya i puti ih resheniya: Sbornik materialov Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2019. pp. 27−31.

20. Rudi D. Yu. Issledovanie summarnogo koefficienta garmonicheskih sostavlyayushchih v elektricheskih setyah nizkogo napryazheniya [Investigation of the total coefficient of harmonic components in low- voltage electrical networks] / V sb.: Nauchnoe soobshchestvo studentov XXI stoletiya. Tekhnicheskie nauki: Sbornik statej po materialam LXXVII studencheskoj mezhdunarodnoj nauchno-prakticheskoj konferencii. 2019. pp. 231−238.

21. Rudi D. Yu. Issledovanie pokazatelej kachestva elektroenergii v rabochej elektricheskoj seti cekha metalloizdelij [Research of electric power quality indicators in the working electric network of the metal products shop] / V sb.: Teoreticheskie i prakticheskie problemy razvitiya sovremennoj nauki: Sbornik materialov XVIII Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2019. pp. 7−14.

 

_________________________________________________________________________________________________________________________________

 

 

 

PROCESSES AND MACHINES

OF AGROENGINEERING SYSTEMS

 

 

 

DOI: 10.34286/1995-4646-2021-76-1-79-85

УДК 630.372.001.891

 

ANDREY V. STARTSEV, Advanced Doctor in Engineering Sciences, Professor

South Ural State Agrarian University, Russian Federation, Chelybinsk

SERGEY V. ROMANOV, Ph. D. of Engineering Sciences, Associate Professor

Northern Trans – Ural State Agricultural University, Russian Federation, Tumen

GALINA M. ROMANOVA, Ph. D. of Economic Sciences

Tyumen Higher Military Engineering Command School, Russian Federation, Tyumen

 

RESULTS OF EXPERIMENTAL STUDIES TO DETERMINE THE COEFFICIENT OF RESISTANCE TO SELF-MOVEMENT OF A MACHINE-TRACTOR UNIT

Abstract. The article presents the results of research to determine the coefficient of resistance to self-movement of a machine-tractor unit, depending on the speed of its movement. This issue is relevant today, since the performance of a machine-tractor unit directly depends on its speed. The purpose of the study was the traction dynamics of the machine-tractor unit consisting of the MTZ- 82 tractor and the SZS-2,1 stubble seeder..Experimental studies were carried out using a complex of calibrated measuring and recording equipment installed on the experimental tractor MTZ-82 and according to the methodology set out in the state standard GOST 30745-2001 (ISO 789-9-90) Agricultural tractors. Determination of traction indicators. In this article you can find tables with the results of experimental studies on the basis of colorimetry graphs of the dependence of the resistance coefficient samoperedelny experimental MTZ-82 and stubble seeders SZS-2,1 speed. Analysis of the results of traction tests of the MTZ-82 tractor and the SZS-2,1 stubble seeder shows that the resistance force to self-movement increases with increasing speed. The obtained results of experimental studies can be used to study the traction dynamics of sowing units with tractors of the traction class 1,4. The speed of movement has a significant impact on the resistance force to self-movement of machine-tractor units and should be taken into account when studying the traction dynamics of tractors.

Key words: traction force, machine-tractor unit, drag force, seeding unit, speed of movement, traction dynamics, skidding, speed of rotation.

 

REFERENCES

1. Alushkin T. E. Povyshenie effektivnosti ispol'zovaniya mashinno-traktornyh agregatov putem primeneniya topliva s modifikatorom [Improving the efficiency of the use of machine-tractor units by using fuel with a modifier]: dis. .... kand. tekhn. nauk : 05.20.01 / Alushkin Timofej Evgen'evich. Tomsk : Altajskij GTU imeni I. I. Polzunova, 2018. 157 p.

2. Kokoshin S. N., Kirgincev B. O. Sovremennye tekhnologii vozdelyvaniya zernovyh kul'tur i ih effektivnost' [Modern technologies of cultivation of grain crops and their efficiency] // Vestnik Gosudarstvennogo agrarnogo universiteta Severnogo Zaural'ya. 2014. No 4 (27). pp. 62−64.

3. Alushkin T. E., Krikov A. M., Berdnikova R. G. Rezul'taty ispytanij traktora MTZ-82 v agregate s zernovoj seyalkoj SZ-5,4 pri rabote na modificirovannom toplive [Test results of the MTZ-82 tractor in an aggregate with a grain seeder SZ-5,4 when working on modified fuel] // Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta. 2016. No 1(37). pp. 69−73.

4. Kokoshin S. N. Fizicheskie osnovy processa razrusheniya pochvy [Physical bases of the process of soil destruction] // Vestnik Gosudarstvennogo agrarnogo universiteta Severnogo Zaural'ya. 2015. No 4 (31). S. 100−104.

5. Terekhova N. N. Issledovanie tyagovoj dinamiki kolesnogo traktora s shinami ravnogo razmera [Study of traction dynamics of a wheeled tractor with tires of equal size]: dis. ... kand. tekhn. nauk : 05.20.03 / Terekhova Nadezhda Nikolaevna. Saratov : Saratovskij GAU imeni N. I. Vavilova,2003. 125 p.

6. Storozhev I. I., Romanov S. V. Rezul'taty laboratornyh issledovanij toplivnoj ekonomichnosti dizel'nogo dvigatelya pri rabote na vodnoj inzhekcii [Results of laboratory studies of fuel efficiency of a diesel engine when working on water injection] // Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2018. No 5 (73). pp. 169−172.

7. Kapica P. L. Eksperiment. Teoriya. Praktika [Experiment. Theory. Practice]: Stat'i i vystupleniya. 4-e izd., ispr. i dop. M. : Nauka. Gl. red. fiz.-mat. lit., 1987. 496 p.

8. David Knight Davy, Sir Humphry, baronet (1778−1829) in Oxford Dictionary of National Biography, Oxford University Press 2004.

9. GOST 30745−2001 (ISO 789-9-90) Traktory sel'skohozyajstvennye. Opredelenie tyagovyh pokazatelej [Agricultural tractors. Determination of traction indicators]. Vved. 2003−01−01. M. : IPK Izdatel'stvo standartov, 2002.

10. GOST 20915−75 Sel'skohozyajstvennaya tekhnika. Metody opredeleniya uslovij ispytanij [Agricultural machinery. Methods for determining test conditions]. Vved. 1977−01−01. M. : Izdatel'stvo standartov, 1975.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-86-92

УДК 629.33.064:621.314

 

PAVEL N. ANISIMOV, Ph. D. of Engineering Sciences, Associate Professor

ALEXANDER D. KAMENSKIH, Senior Lecturer

ALEKSEY P. OSTASHENKOV, Ph. D. of Engineering Sciences, Associate Professor

Volga State University of Technology, Republic of Mari El, Yoshkar-Ola Mari State University, Republic of Mari El, Yoshkar-Ola

 

MATHEMATICAL MODELING OF THE RELIABILITY OF A PV INSTALLATION FOR AN APIARY

Abstract. A failure of an autonomous power supply system of an apiary with a PV installation may be due to the failure of its element, as well as insufficient insolation to ensure the power supply of the apiary's electrical receivers from a PV battery. A study of the reliability of the power supply system of the apiary with the PV installation was carried out using the logical- probabilistic method. A fault tree was built by detailing the events associated with power failures. The following events were taken into account: test diagnostics of the elements of the power supply system, replacement of failed elements, failure of elements, decrease in the power of the PV battery due to a decreasing of an insolation. All events were divided into two groups: events in which there is sufficient insolation to power the apiary's power receivers from the PV battery, as well as events when power supply cannot be provided only by the PV installation. The last group of events included events that caused short-term (at the time of switching) and long-term (at the time of repair and restoration work) shutdowns. Long-term shutdowns are associated with the coincidence of cell failures with replacement or diagnostics of one or more elements of the power supply system: controller, battery, PV battery. Expressions have been received to calculate the probability of short-term and long-term shutdowns, the probability of a power supply system failure due to the decreasing of the insolation, as well as the total probability of failures. As a result of substitution of the values of the reliability indicators of the elements, the value of the total probability of failure of the power supply system of the apiary located in the central part of the Republic of Mari El was obtained during the year.

Key words: photovoltaic installation, reliability, power supply, apiary power supply, logical- probabilistic method.

 

REFERENCES

1. Harchenko N. A., Ryndin V. E. Pchelovodstvo [Beekeeping]: Uchebnik dlya studentov vuzov. M. : Izdatel'skij centr «Akademiya», 2003. pp. 79.

2. Meged' A. G., Polishchuk V. P. Pchelovodstvo [Beekeeping]: Uchebnik / Per. s ukr. Kiev : Vyshcha shkola, 1990. 325 p.

3. Voronin S. M. Formirovanie avtonomnyh sistem energosnabzheniya sel'skohozyajstvennyh ob"ektov na osnove vozobnovlyaemyh istochnikov energii [Formation of autonomous power supply systems for agricultural facilities based on renewable energy sources]: dis. ... doktora tekhn. nauk : 05.20.02 / Voronin Sergej Mihajlovich. Zernograd, 2009. pp. 6.

4. Taran A. A. Avtonomnaya solnechnaya elektrostanciya dlya peredvizhnyh pasek [Autonomous solar power plant for mobile apiaries]: dis. ... kand. tekhn. nauk : 05.20.02 / Taran Andrej Aleksandrovich. Zernograd, 2007. 156 p.

5. Baschel S., Koubli E., Roy J., Gottschalg R. Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance // Energies. 2018. No 6. pp. 15−16.

6. Colli A. Failure mode and effect analysis for photovoltaic systems. Renewable and Sustainable Energy Reviews. 2015. Vol. 50. pp. 804−809.

7. Zini G., Mangeant C., Merten J. Reliability of large-scale grid-connected photovoltaic systems. Renewable Energy. 2011. Vol. 36. pp. 2334−2340.

8. Mahdia I., Chalaha S., Nadjia B. Reliability study of a system dedicated to renewable energies by using stochastic petri nets: application to photovoltaic (PV) system. Energy Procedia. 2017. Vol. 136. pp. 513−520.

9. Grigor'eva O. A., Krivenko T. V., Tremyasov V. A. Analiz nadezhnosti avtonomnogo vetrodizel'nogo kompleksa [Analysis of the reliability of an autonomous wind-diesel complex] // Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2016. No 2. pp. 45−52.

10. Shuhanov S. N., Kuz'min A. V., Boloev P. A. Nadezhnost' raboty mashinno-traktornogo agregata [Reliability of machine-tractor unit operation] // Inzhenernye tekhnologii i sistemy. 2020. T. 30. No 1. pp. 8−20.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-93-99

УДК 631.3.017.005.33-192

 

BORIS N. ORLOV, Advanced Doctor in Engineering Sciences, Professor

MARTIK A. KARAPETYAN, Advanced Doctor in Engineering Sciences, Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

NAMSA B. ORLOV, Ph. D. of Engineering Sciences, General Manager

JSC "Republican Navigation and Information Center", Republic of Kazakhstan


INVESTIGATION OF THE LOSS OF WORKING CAPACITY DUE TO WEAR AND TEAR DURING THE OPERATION OF WORKING ELEMENTS OF MACHINES AND EQUIPMENT

Abstract. The analysis of the working capacity due to wear and tear during the operation of the working bodies of technological machines and equipment shows the nature of the relationship and the sequence of the individual stages of the research. At the same time, the research is based on a systematic approach, complex and comparative methods using computational and experimental methods and constructed mathematical models of the operation of working surfaces. The study of problems is based on the application of modern methods of scientific research: systems theory, reliability and probability theory, graphs and matrices, rank correlation, the apparatus of production functions; a set of analytical research methods, including methods of mathematical modeling and mathematical statistics. The necessary software was developed in the form of an interactive information system that implements the proposed mathematical model for determining the failure rate of parts of working bodies and components of technical systems of technological machines and equipment with the prediction of their service life in terms of wear resistance. The analysis of the increase in the accuracy of the loss of operability of the working bodies of technological equipment is provided by the creation and use of a bank of statistical data on the elements of a wide range. This will significantly improve the availability of process equipment with spare parts and will lead to a reduction in downtime during operation.

Key words: wear, failure, operation, system theory, reliability, rank correlation, performance, statistics.

 

REFRENCES

1. Puchin E. A. Teoreticheskie osnovy ocenki ostatochnoj godnosti mashin [Theoretical foundations of the evaluation of the residual shelf life of machines]: Monografiya. Tambov, 1997. 72 p.

2. Orlov B. N. Tekhnologicheskie osnovy kinetiki razrusheniya mashin i oborudovaniya prirodoobustrojstva [Technological bases of kinetics of destruction of machines and equipment of nature management]. M. : MGUP, 2006. 285 p.

3. Kravchenko I. N., Karcev S. V., Erofeev M. N. Metodika ocenki tekhnicheskogo sostoyaniya mashin i tekhnologicheskogo oborudovaniya dlya special'nogo stroitel'stva [Methodology for assessing the technical condition of machines and technological equipment for special construction]: Monografiya. Balashiha : VTU pri Federal'nom agentstve special'nogo stroitel'stva, 2008. 98 p.

4. Orlov N. B. Prognozirovanie urovnya nadezhnosti eksperimental'no-raschetnymi metodami [Forecasting the level of reliability by experimental and computational methods] // Prirodoobustrojstvo. 2010. No 4. pp. 89−91.

5. Orlov B. N. Issledovanie vliyaniya vidov iznashivaniya na otkaz rabochih organov mashin prirodoobustrojstva [Investigation of the influence of types of wear on the failure of working bodies of nature management machines] / Logistika, transport, ekologiya – 2018: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii. Erevan : Armenpak, 2018.

6. Teoriya nadezhnosti [Theory of Reliability] / Pod red. V. A. Ostrejkovskogo. M. : Vysshaya shkola, 2003. 463 p.

7. Orlov N. B. Povyshenie nadezhnosti sistem za schet rezervirovaniya [Improving the reliability of systems through redundancy] // Trudy Vserossijskogo nauchno-issledovatel'skogo tekhnologicheskogo instituta remonta i ekspluatacii mashinno-traktornogo parka, GOSNITI, Tom 108. 2011. 276 p.

8. Orlov B. N. Fiziko-mekhanicheskaya model' iznosa detalej mashin razlichnyh konstrukcij [Physical and mechanical model of wear of machine parts of various structures] // Logistika, transport, prirodoobustrojstvo – 2015: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii. Erevan : Armenpak, 2015. pp. 59−62.

9. Orlov B. N., Karapetyan M. A., Matveev A. S. Vliyanie industrializacii sel'skogo hozyajstva na konstruktivnuyu nadezhnost' mashin APK [Influence of the industrialization of agriculture on the constructive reliability of agricultural machinery] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2018. No 3. pp. 72−77.

10. Pat. 77825 Rossijskaya Federaciya, MPK V 60 V 15/00(2006.01). Ustrojstvo dlya povysheniya prohodimosti transportnogo sredstva [A device to improve the patency of a vehicle] / Puchin E. A., Orlov B. N., Korotkij M. V., Orlov N. B.; zayavitel' i patentoobladatel' Orlov Boris Namsynovich (RU), Puchin Evgenij Aleksandrovich (RU). No 2008126664/22 ; zayavl. 02.07.2008 ; opubl. 10.11.2008, Byul. No 31.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-100-107

УДК 621.43.013

 

EVGENIY V. NOVIKOV, Ph. D. of Engineering Sciences, Associate Professor

ARTYOMBEK S. GUZALOV, Postgraduate

Russian Timiryazev State Agrarian University, Russian Federation, Moscow


METHODS OF OPERATION OF THE INTERNAL COMBUSTION ENGINE WITH THE USE OF HYDROGEN FUEL

Abstract. Currently, the issue of transferring mobile traction vehicles to alternative fuels is relevant. This is due to the fact that the cost of gasoline and diesel fuel is constantly growing, and the consumption of fuel and lubricants when performing technological processes in agricultural production requires a large fuel consumption. This was due to, among other factors, climate change. Therefore, the transfer of technological designs of engines to alternative fuels is more relevant than ever. In this context, scientists, designers, engine builders are faced with the search for solutions and changes in the structural elements of the internal combustion engine that would solve this problem. The article analyzes the thermodynamic parameters arising in the process of the internal combustion engine cycle and the hydrocarbon composition of the fuel. They transmit the dependences on the efficiency of the internal combustion engine, assessed by a thermodynamic criterion, and are also derived based on determining the direction of increasing the effective performance of the internal combustion engine. The article examines the well-known works of foreign and domestic scientists who studied the possibility of switching to alternative fuels. The advantages and significant disadvantages of using fuel-hydrogen mixtures are noted. Based on the analysis of scientific works of Russian and foreign scientists, the following calculations are given: lower heat of combustion of fuel, speed of combustion of the fuel-hydrogen mixture, piston movement, determination of the crank arm. The calculation results made it possible to transfer the ignition moment to the expansion stroke cycle in order to obtain the maximum pressure. The cycle is shown as a diagram. The possibility of efficient fuel combustion and maximum energy recovery is shown in the diagram of the proposed design with a modified fuel supply and engine ignition system. The proposed schematic concept of the power supply system with a sufficiently detailed description of the principle of operation allows you to adjust the working process in the engine to a mixture of fuel and hydrogen, to increase productivity, and what is important is the efficiency and environmental friendliness of a mobile traction vehicle.

Key words: internal combustion engine, fuel efficiency, indicator indicators, theoretical engine cycle, power system, hydrogen supply to the engine cylinder.

 

REFRENCES

1. Afanas'ev A. N., Bortnikov L. N., Byvshev P. Ya., Sorokin A. I. Rezul'taty eksperimental'nogo issledovaniya vliyaniya razlichnyh sposobov podachi vodoroda v DVS na ego harakteristiki [The results of experimental study of the effect of different methods of supplying hydrogen to the engine on its characteristics]: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii «Progress transportnyh sredstv i sistem», Ch. 2. Volgograd, 2017.

2. Dmitrievskij A. V., Tyufyakov A. S. Benzinovye dvigateli [Petrol engines]. M. : Mashinostroenie, 1993. 240 p.

3. Ibadullaev G. A. Benzinovyj dvigatel' vnutrennego sgoraniya so sverhvysokoj stepen'yu szhatiya [Gasoline internal combustion engine with ultra-high compression ratio]. Mahachkala : DGTU, 2017. 45 p.

4. Gajnullin F. G. [i dr.] Prirodnyj gaz kak motornoe toplivo na transporte [Natural gas as a motor fuel in transport]. M. : Nedra, 2016. 255 p.

5. Kolchin A. I., Demidov V. P. Raschet avtomobil'nyh i traktornyh dvigatelej [Calculation of automobile and tractor engines]. M. : Vysshaya shkola, 2017. 496 p.

6. Mishchenko A. I. Primenenie vodoroda dlya avtomobil'nyh dvigatelej [Application of hydrogen for automobile engines]. Kiev : Naukova dumka, 1977. 143 p.

7. Novikov E. V., Moskovkin S. N. Perspektivy razvitiya toplivnyh sistem s elektronnym upravleniem dlya avtotraktornyh dizelej [Prospects for the development of fuel systems with electronic control for automotive diesel engines] / V sb.: Aktual'nye problemy v sovremennoj nauke: Teoriya i praktika / II- ya Mezhdunarodnaya nauchno-prakticheskaya konferenciya. 2018. pp. 146−159.

8. Pulyaev N. N., Pil'shchikov V. L. Pererabotka otrabotavshih avtomobil'nyh masel [Processing of spent automobile oils / In the collection] / V sb.: Chteniya akademika V. N. Boltinskogo: Seminar: sbornik statej. 2020. pp. 120−130.

9. Shudo T., Nakajima Y., Futakuchi T. Thermal Efficiency Analysis in a Hydrogen Premixed Combustion Engine // JSAE Review, 2000. V. 21, pp. 177−182.

10. Das L. Exhaust Emission Characterization of Hydrogen-Operating Engine System: Nature of Pollutants and Their Control Techniques / International Journal of Hydrogen Energy, 1991. V. 16, No. 11, pp. 765−775.

11. Salmin V. V., Borsuk V. V., Novikov E. V. Povyshenie effektivnosti dvigatelya vnutrennego sgoraniya primeneniem toplivo-vodorodnyh smesej [Improving the efficiency of the internal combustion engine by using fuel-hydrogen mixtures] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2011. No 1. pp. 94−100.

12. Voinov A. N. Sgoranie v bystrohodnyh porshnevyh dvigatelyah [Combustion in high-speed piston engines]. M. : Mashinostroenie, 2018. 277 p.

13. Hudashova A. I., Pulyaev N. N., Pil'shchikov V. L. K voprosu ob opredelenii soderzhaniya metallov v nefteproduktah [On the question of determining the content of metals in petroleum products] // Nauka bez granic. 2020. No 3 (43). pp. 76−81.

14. Hakimov R. T., Didmanidze O. N., Sheremet'eva M. I. Metody opredeleniya metanovogo chisla komponentnogo sostava prirodnogo gaza [Methods for determining the methane number of the component composition of natural gas] / V sb.: Sovremennye transportnye tekhnologii: zadachi, problemy, resheniya: Sbornik trudov III Vserossijskoj (s mezhdunarodnym uchastiem) nauchno- prakticheskoj konferencii nauchnyh, nauchno-pedagogicheskih rabotnikov, aspirantov i studentov / OU VO «Yuzhno-Ural'skij institut upravleniya i ekonomiki». 2019. pp. 74−84.

15. Chervyakov V. Cikl Chervyakova, ili kak povysit' effektivnost' DVS [Chervyakov's cycle, or how to increase the efficiency of the internal combustion engine] // Tekhnika molodezhi. 2010. No 1. pp. 38–40.

 

_________________________________________________________________________________________________________________________________

 

 

DOI: 10.34286/1995-4646-2021-76-1-108-114

УДК 621.436.004.67.001.13

 

SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow


DESIGN OF THE SITE OF TECHNICAL SERVICE OF DIESEL FUEL EQUIPMENT

Abstract. The article proposes a draft planning solution for the technical service section for the repair of diesel fuel equipment. The calculations of the nominal annual fund of working time of workers and equipment, the amount of unavoidable losses of working time, the actual annual fund of working time of workers, the annual labor intensity of the current repair of diesel fuel equipment, the annual labor intensity by type of repair and maintenance work, the list and turnout number of workers, the number of production and auxiliary workers, the required amount of test equipment, production area, and the selection of equipment for the site are presented.

Key words: project, process, pressure, pump, engine, diesel fuel equipment, technical service area.

 

REFRENCES

1. Apatenko A. S. Organizaciya skladskih izderzhek v usloviyah hraneniya i realizacii neispol'zuemyh zapasov material'no-tekhnicheskih resursov na predpriyatiyah tekhnicheskogo servisa v APK Rossii [Organization of warehouse costs in the conditions of storage and sale of unused stocks of material and technical resources at the enterprises of technical service in the agro-industrial complex of Russia] / V sb.: Nauchno-informacionnoe obespechenie innovacionnogo razvitiya APK: Materialy X Mezhdunarodnoj nauchno-prakticheskoj internet-konferencii. 2018. pp. 316−319.

2. Apatenko A. S., Vladimirova N. I. Analiz sistem remontno-profilakticheskogo obsluzhivaniya tekhnologicheskih mashin [Analysis of systems of repair and preventive maintenance of technological machines] // Vestnik FGOU VPO «Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina». 2013. No 1 (57). pp. 72−76.

3. Tojgambaev S. K., Evgrafov V. A. Vybor kriteriev optimizacii pri reshenii zadach po komplektovaniyu parka mashin proizvodstvennyh sel'skohozyajstvennyh organizacii [The choice of optimization criteria in solving problems of completing the fleet of machines of agricultural production organizations] // Doklady TSKHA: Sbornik statej. Vyp. 291. Ch. II. M. : RGAU−MSKHA. 2019. 674 p.

4. Tojgambaev S. K. Stend dlya obkatki i ispytaniya dvigatelej [Stand for running-in and testing of engines] // Aktual'nye problemy sovremennoj nauki. 2014. No 5 (78). pp. 146−149.

5. Tojgambaev S. K., Evgrafov V. A. Opredelenie trudoemkosti diagnostirovaniya avtomobilej [Determination of the labor intensity of diagnosing cars] // Estestvennye i tekhnicheskie nauki. 2019. No 12 (138). 74 p.

6. Novichenko A. I., Gornostaev V. I. Reshenie zadach optimizacii parka mashin i tekhnologicheskogo osnashcheniya APK s primeneniem tekhnologij mul'tiagentnogo podhoda [Solving problems of optimizing the fleet of machines and technological equipment of the agro-industrial complex with the use of multi-agent approach technologies] // Doklady TSKHA: Sbornik statej. 2016. pp. 281−284.

7. Novichenko A. I., Podhvatilin I. M. Ocenka effektivnosti funkcionirovaniya sredstv tekhnologicheskogo osnashcheniya APK [Evaluation of the efficiency of the functioning of the means of technological equipment of the agro-industrial complex] // Prirodoobustrojstvo. 2013. No 2. pp. 92−96.

8. Sevryugina N. S., Prohorova E. V., Dikevich A. V. Modelirovanie neshtatnyh situacij pri ocenke nadezhnosti spectekhniki [Modeling of emergency situations in assessing the reliability of special equipment] // Vestnik Har'kovskogo nacional'nogo avtomobil'no-dorozhnogo universiteta. 2012. No 57. pp. 90−96.

9. Tojgambaev S. K., Slepcov O. N. Matematicheskoe modelirovanie ispytaniya toplivnyh nasosov nizkogo davleniya toplivnoj sistemy dizelya [Mathematical modeling of testing of low-pressure fuel pumps of the diesel fuel system] / V sb.: Logistika, transport, ekologiya – 2017: Materialy mezhdunarodnoj nauchno- prakticheskoj konferencii. 2017. pp. 83−94.

10. Shnyrev A. P., Tojgambaev S. K. Ustrojstvo dlya vosstanovleniya bronzovyh vtulok [Device for restoring bronze bushings] / V sb.: Prirodoohrannoe obustrojstvo territorij: Materialy nauchno-tekhnicheskoj konferencii. 2002. pp. 153−154.

 

_________________________________________________________________________________________________________________________________