THE INTERNATIONAL
TECHNICAL-ECONOMIC
JOURNAL

Contents

ENERGY

 

Zhdaneev O. V., Seregina A. A.

Vectors of technological cooperation of the BRICKS in the fuel and energy complex (part 2)

 
7

Petrov V. S.
Development of a mathematical model reliability prediction power transformers

 
23

 

AGRO-ENGINEERING PROCESSES AND MACHINES

 

Savinykh P. A., Isupov A. Y., Kipriyanov F. A.
Thermal treatment of grain as a way to increase its digestibility

 
31

Savelyeva E. V., Lomonosov D. A., Losev A. S.
Study of material movement in the zone its inflow in the developed ejector feederof the discharge pneumatic conveying system.

 
41

Belokovyl'skij A. M.
Ways to improve tractor reliability

 
51

Didmanidze O. N., Bolshakov N. A.
Modeling of an automobile and tractor cooling system radiator using polymeric materials.

 
57

Guzalov A. S., Didmanidze O. N.
Experimental studies of additional supercharging on engine D-260.2 with electric drive.

 
66

Mochunova N. А., Karapetyan M. A., Pryahin V. N.
Study of control systems of agricultural facilities agricultural production.

 
74

Shkel' A. S.
The new modernization option of the Ural-432065 transport technological complex

 
83

Tojgambaev S. K.
Development of the technological process for maintenance of the farm's machine and tractor fleet

 
98

Andreev S. A., Shevkun N. A.
Justification of balancing system parameters system in wind engines with mutually perpendicular shafts

 
106

Evmenchik A. S.
Study of the efficiency of energy complexes based on renewable energy sources for integrated power supply to remote consumers

 
116

 

 

ABSTRACTS OF ARTICLES INDEXED IN AGRIS

 

Abstracts

125

 

 

_________________________________________________________________________________________________________________________________ 

 

 

 

ENERGY

 

 

 

 

DOI: 10.34286/1995-4646-2021-77-2-7-22

УДК 339.1:620.9

 

OLEG V. ZHDANEEV, Ph. D. of Physico-Mathematical Sciences, Head of the Directorate of Technologies in the Fuel and Energy Sector

ANTONINA A. SEREGINA, Ph. D. of Political Sciences, Project Director

Federal State Budgetary Institution "Russian Energy Agency" of the Ministry of Energy of the Russian Federation, Moscow, Russian Federation

 

VECTORS OF BRICS TECHNOLOGICAL COOPERATION IN THE FUEL AND ENERGY SECTOR (PART 2)

Abstract. BRICS is a global transcontinental player that occupies 30 % of the land mass; its members (Brazil, Russia, India, China, South Africa) account for 43 % of the planet's population, 21 % of global GDP, and 17 % of R&D expenditure; their innovation projects in the areas related to the functioning of the fuel and energy complex constitute a signifi- cant cluster. Despite the distant location of the BRICS countries relative to each other and the initial desire of companies to work within their own country (primarily due to the lack of common markets), they have common technological interests and are ready for further technological development. This article explores promising areas of cooperation between the BRICS countries in the field of fuel and energy in terms of their importance for main- taining the countries' energy sovereignty and achieving the common goals of the integra- tion association. It identifies the key competencies and vectors of cooperation of the mem- ber states in the FEC and presents specific proposals to bring ISTC in the energy sector to a new level, indicating priority areas for the development, implementation and exchange of pioneering technologies in the field of traditional and renewable energy.

Keywords: BRICS, fuel and energy complex, international scientific and technological co-operation, energy policy.

 

REFERENCES

1. Gis-profi. Central'noe dispetcherskoe upravlenie toplivno-energeticheskogo kom- pleksa: Cifrovizaciya TEK Rossii, 2018 [Gis-profi. Central Dispatch Administration of the Fuel and Energy Complex: Digitalization of the Russian Fuel and Energy Complex, 2018]. URL: https://gisprofi.com/gd/documents/dannye-tsentralnogo-dispetcherskogo-upravleniya-top-livno-energeticheskogo.html.

2. Energeticheskij byulleten': energeticheskie prognozy na fone krizisa [Energy bulletin: energy forecasts against the background of the crisis] // Analiticheskij centr pri pravitel'stve Rossijskoj Federacii. Noyabr' 2020. URL: https://ac.gov.ru/uploads/2-Publications/energo/en-ergo_november_2020.pdf.

3. Morskaya associaciya vysokih tekhnologij Marinet. Zashchita i Energiya. Tekh- nologiya aktivnoj zashchity beregovoj linii i vyrabotka elektroenergii [Maritime High Technol- ogy Association Marinet. Defence and Energy. Technology of active coastline protection and power generation]. URL: https://marinet.org/protection-energy-the-technology-of-active-shoreline-protection-and-power-generation/.

4. Zverev D. L. Plavuchie atomnye energobloki OKBM Afrikantova [Floating nuclear power units of OKBM Afrikantov]. Nizhnij Novgorod, 2020.

5. Otchet po energeticheskim tekhnologiyam BRIKS, 2020 g. [BRICS Energy Technol- ogy Report 2020]. ISBN 978-5-6045331-1-6. Citirovanie otcheta: Platforma sotrudnichestva BRICS Energy Research.

6. Otchet ob energosisteme Brazilii, Versiya 1.0, Profil' strany [Brazil Power System Report, Version 1.0, Country Profile] // Dialogos energeticos / Agora Energiewende, 155/01- CP-2019 / RU Publikaciya: sentyabr' 2019 g.

7. Alifirova E. Dorogoj TOR. Braziliya gotovitsya k krupnejshemu of-fshornomu neftyanomu aukcionu v mire [Dear TOR. Brazil prepares for the largest offshore oil auction in the world] // Neftegaz.RU. URL: https://neftegaz.ru/news/gosreg/501944-dorogoy-tor-braziliya-gotovitsya-k-provedeniyu-samogo-dorogo-auktsiona-na-shelfovye-mestorozdeniya/.

8. Sidorovich V. Braziliya: plan razvitiya energetiki do 2026 goda [Brazil: energy development plan until 2026]. URL: https://renen.ru/brazil-energy-development-plan-to-2026/.

9. Upravlenie energeticheskoj informacii SSHA. (2016), gidroelektrostancii sostavlyayut bolee 70% proizvodstva elektroenergii v Brazilii [US Energy Information Administration. (2016), hydropower plants account for more than 70% of Brazil's electricity produc- tion]. URL: https://www.eia.gov/todayinenergy/detail.php?id=27472.

10. Nevel'skij A., Overchenko M. Braziliya hochet stat' chetvertym krupnej-shim pro- izvoditelem nefti v mire // Vedomosti / Biznes [Brazil wants to become the fourth largest oil producer in the world]. URL: https://www.vedomosti.ru/business/articles/2019/11/06/815597-braziliya-chetvertim-nefteproizvoditelem.

11. Nnaemeka Vinsent Emodi Innovacii v energeticheskih tekhnologiyah v Brazilii [Innovations in energy technology in Brazil] // Mezhdunarodnyj zhurnal ekonomiki i politiki energetiki. 2015. Tom 5 (No 1). pp. 263−287.

12. Silvera V., Kantane D., Reginatto R., Ledesma Dzh. Dzh. G., Shimdt M. H., Ando-mladshij O. Tekhnologii nakopleniya energii v brazil'skoj elektricheskoj sisteme [En- ergy storage technologies in the Brazilian electricity system] // Mezhdunarodnaya konferenciya po vozobnovlyaemym istochnikam energii i kachestvu elektroenergii (ICREPQ’18). ISSN 2172-038X, No 16 aprel' 2018 g.

13. Zhdaneev O. V., Frolov K. N. O prioritetnyh napravleniyah razvitiya bu-rovyh tekhnologij v Rossii (v poryadke obsuzhdeniya) [On priority directions of drilling technologies development in Russia (by way of discussion)] // Burenie skvazhin. 2020. No5. pp. 42–48. DOI: 10.24887/0028-2448-2020-5-42-48/

14. Mezhdunarodnoe energeticheskoe agentstvo. Obzor energeticheskoj politiki [Inter- national Energy Agency. Energy Policy Review]. Yuzhnaya Afrika, 2020.

15. Marvin Girhart (Gearhart Industries Inc.), Kelli A. Cimer (Girhart Industries Inc.), Orien M. Najt (Gearhart Industries Inc.). (1981), Mud Pulse MWD Systems Report. URL: https://www.onepetro.org/journal-paper/SPE-10053-PA.

16. Meridian proekt. Stroitel'stvo rossijskoj chasti mezhdunarodnogo transportnogo marshruta Evropa-Zapadnyj Kitaj [Meridian Project. Construction of Russian part of international transport route Europe-Western China]. URL: https://p3transport.ru/doc/presentations/sapozhnikov.pdf

17. Mezhdunarodnoe energeticheskoe agentstvo. Obzor energeticheskoj politiki [Inter- national Energy Agency. Energy Policy Review]. Kitaj, 2020 g.

18. Kratkie analiticheskie zapiski po uskoreniyu dostizheniya CUR 7 v podderzhku pervogo obzora CUR 7 na politicheskom forume vysokogo urovnya OON, 2018 g. Pri sodejstvii Departamenta po ekonomicheskim i social'nym voprosam Organizacii Ob"edinennyh Nacij [Briefing notes on accelerating the achievement of SDG 7 in support of the first review of SDG 7 at the UN High-level Political Forum, 2018. Facilitated by the United Nations Department of Economic and Social Affairs].

19. Mezhdunarodnoe energeticheskoe agentstvo. Obzor energeticheskoj politiki [Inter- national Energy Agency. Energy Policy Review]. Indiya, 2020 g.

 

_________________________________________________________________________________________________________________________________

DOI: 10.34286/1995-4646-2021-77-2-23-30

УДК 621.314.222.6:519.87-192

 

VIKTOR S. PETROV, Ph. D. of Engineering Sciences, Associate Professor

National Research University Moscow Power Engineering Institute, Branch Russian Federation, Smolensk

 

DEVELOPMENT OF A MATHEMATICAL MODEL RELIABILITY PREDICTION POWER TRANSFORMERS

Abstract. The paper considers modeling of forecasting and reliability estimation of one of the basic elements of electric power systems and power supply systems − transformers. At modeling of mathematical model of transformer reliability the theory of similarity and modeling has been used. The material of the article corresponds to the basic principles and provisions of the scientific school in the theory of similarity and modeling, created by Pro- fessor V. A. Venikov. The mathematical model was developed on the basis of the well- known Montzinger equation, which connects transformer service life with the temperature of its windings and the insulation characteristics of these windings. The resulting trans- former reliability criterion model represents the dependence of the relative wear of trans- former winding insulation on the relative value of load current in the stationary mode of operation. Calculations of the relative insulation wear from the relative load current are given, which allowed to obtain the dependence of insulation wear (the value inverse of the service life) on the relative load current. In operation it is most convenient, because the load currents are monitored by appropriate devices during transformers operation, and the temperature is measured episodically. The resulting criteria model, which uses relative units, makes it possible to quantify at once the change in insulation wear in relative units or percentages without the value of their real value in named units. Examples of using the resulting model are given. The developed model is not found in the literature, and conven- ience of its application for analysis and calculations is proved by the given examples.

Keywords: power transformer, reliability, modeling, equivalence, similarity, prediction, insulation, heating, power supply, power systems.

 

REFERENCES

1. Bodnar V. V. Nagruzochnaya sposobnost' silovyh maslyanyh transformatorov [Load capacity of power oil transformers]. M. : Energoatomizdat, 1983. 176 p

2. Vasyutinskij S. B. Voprosy teorii i rascheta transformatorov [Theory and calculation of transformers.]. L. : Energiya, 1970. 432 p.

3. Ermolin N. P., Zherihin I. P. Nadezhnost' elektricheskih mashin [Reliability of Elec- trical Machines]. L. : Energiya, 1976. 248 p.

4. Venikov V. A. Teoriya podobiya i modelirovaniya [Modelling of reliability of the electric supplying systems elements by the method of the accelerated tests]. M. : Vysshaya shkola, 1976. 479 p.

5. Petrov V. S. Stepanov Yu. K. Modelirovanie nadezhnosti elementov sistem elektros- nabzheniya metodom uskorennyh ispytanij [Modelling of reliability of the electric supplying systems elements by the method of the accelerated tests] // Trudy Moskovskogo energetich- eskogo instituta. 1980. Vyp. 470. pp. 15−24.

6. Guhman A. A. Vvedenie v teoriyu podobiya [Introduction to similarity theory]. M. : Vysshaya shkola, 1973. 296 p.

7. Petrov V. S. Prognozirovanie nadezhnosti lamp nakalivaniya [Prediction of reliabil- ity of incandescent lamps] // Trudy Moskovskogo energeticheskogo instituta. 1980. Vyp. 470. pp. 41−49.

8. Solopov R. V. Razrabotka metoda kriterial'nogo programmirovaniya dlya op-timi- zacii rezhimov elektroenergeticheskoj sistemy [Development of a criterial programming method for optimization of the electric power system regimes]: Dis. ... kand. tekhn. nauk : 05.14.02 / Solopov Roman Vyacheslavovich / Nacional'nyj issledovatel'skij universitet MEI. M., 2013. 160 p.

9. Savincev Yu. M. Matematicheskaya model' ekspluatacionnoj nadezhnosti ener- goeffektivnyh raspredelitel'nyh transformatorov [Mathematical model of operational reliability of energy-efficient distribution transformers]. URL: http://elektrotekhnicheskij-portal.rf/statya-obzor/item/672.

10. Hristich R. M., Lukovenko A. S. Prognozirovanie nadezhnosti i rezhimov raboty tyagovyh transformatorov v usloviyah predel'noj nagruzki [Prediction of reliability and modes of operation of traction transformers under limit load] // Nauchnaya elektronnaya biblioteka. 2015. No 2(46). pp. 130−136.

11. Polozhenie ob ekspertnoj sisteme kontrolya i ocenki sostoyaniya i uslovij eksplu- atacii silovyh transformatorov, shuntiruyushchih reaktor, izmeritel'nyh transformatorov toka i napryazheniya. RD 153-34.3-46.304-00. Prilozhenie No 1 k Prikazu Minenergo Rossii No 81 ot 08.02.2019 goda [Regulation on expert system for control and assessment of condition and operating conditions of power transformers, shunt reactors, current and voltage measuring transformers. RD 153-34.3-46.304-00. Annex No. 1 to Order of the Ministry of Energy of Rus- sia No. 81 of 08.02.2019]. URL: http://gostrf.com/normadata/1/4294844/4294844637.htm.

_________________________________________________________________________________________________________________________________

 

 

PROCESSES AND MACHINES

OF AGROENGINEERING SYSTEMS

 

 

 

DOI: 10.34286/1995-4646-2021-77-2-31-40

УДК 621.78:631.365:633

 

PETR A. SAVINYKH, Advanced Doctor in Engineering Sciences, Professor, Chief Scientist, Head of the Laboratory

ALEXEY Y. ISUPOV, Ph. D. of Engineering Sciences, Senior Research Officer
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky, Russian Federation, Kirov

FEDOR A. KIPRIYANOV, Ph. D. of Engineering Sciences, Associate Professor

Vologda State Dairy Farming Academy by N.V. Vereshchagin, Russian Federation, Vologda

 

THERMAL TREATMENT OF GRAIN AS A WAY TO INCREASE ITS DIGESTIBILITY

Abstract. Technologies of preparation and methods of feed preparation must provide max- imum digestibility of metabolizable energy and nutrients. When digesting the fodder the animal should spend the minimum amount of vital resources to break it down and assimi- late it. The efficiency of obtaining the final products of animal husbandry, whether it be milk yields, or the average daily gain of young fattening depends directly on how much energy potentially put in the feeds, assimilated by the animal and will be converted into the final product. Cereal forages being one of the most important components of cattle ration from the energy point of view require a careful approach in their preparation. This is due, first of all, to the fact that the whole, unprepared for feeding grain is practically not ab- sorbed by the body of the animal. Mechanical methods of preparing grain for feeding, in particular crushing, increase digestibility. However, the intensive growth of productivity of dairy and beef cattle imposes higher requirements for digestibility of grain forages, which in turn leads to improvement of methods of preparation of grain forage. Thus the vector of perfection of preparation methods is directed not simply on change of granulo- metric composition of forage, but on the change of structural condition of grain allowing to increase the availability of nutrients and energy. The article considers promising ways of heat treatment of grain used in the preparation of grain for feeding.

Keywords: grain, hydrothermal treatment, heat treatment of grain, dextrin content, starch, grain raw material.

 

REFERENCES

1. Termoobrabotka zerna IK-izluchatelem [Thermal treatment of grain by infrared emit- ter]. M. : CNIITEN, 1993. 28 p.

2. Vajsmih S. Ya., Dar'man'yan N. S. Granulirovanie kormov [Pelletizing fodder]. M. : Kolos, 1978. 163 p.

3. Mamedov N. H. Teplovaya obrabotka zerna [Heat treatment of grain] // Agrarnaya nauka. 2015. No 11. pp. 28−30.

4. Syrovatka V. I. Progressivnye tekhnologii proizvodstva kombikormov [Progressive technologies of mixed fodder production] // Tekhnika i oborudovanie dlya sela. 2015. No 11. pp. 2−6.

5. Syrovatka V. I. Perspektivnye tekhnologii proizvodstva kombikormov [Perspective technologies of mixed fodder production] // Zootekhniya. 2016. No 10. pp. 7−12.

6. Silich S. Ekstrudirovanie [Extrusion] // Kombikormovaya promyshlennost'. 1988. No 4. 29 p.

7. Sysuev V. A., Kazakov V. A. Novye tekhnologii posleuborochnoj pererabotki zerna i polucheniya vysokokachestvennyh kormov dlya zhivotnovodstva [New technologies of post- harvest grain processing and obtaining high-quality forage for livestock] // Agrarnaya nauka Evro-Severo-Vostoka. 2015. No 5 (48). pp. 73−79.

8. Mar'in V. A., Ermakov R. B., Blaznov A. N. Effektivnost' primeneniya nepreryvnogo sposoba gidrotermicheskoj obrabotki zerna grechihi [The effectiveness of the continuous method of hydrothermal treatment of buckwheat grain] // Vestnik AGAU. 2014. No 10 (120). pp. 137−142.

9. Kurdyumov V. I., Pavlushin A. A., Zozulya I. N., Sutyagin S. A. Teplovaya obrabotka zerna pri proizvodstve kormov [Heat Treatment of Grain in the Production of Fod- der] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. 2011. No 5. pp. 17−18.

10. Antonov N. M., Makevnina E. I., Korobov I. A. Teplovaya obrabotka zerna yach- menya [Heat treatment of barley grain] // Sel'skij mekhanizator. 2012. No 8. pp. 26.

11. Sysuev V. A., Savinyh P. A., Kazakov V. A. Tekhnologii plyushcheniya zerna i ustrojstva dlya ih osushchestvleniya [Technologies of grain conditioning and devices for their implementation] // Nauchno-tekhnicheskij progress v sel'skohozyajstvennom proizvodstve: Materialy mezhdun. nauch.-praktich. konferencii. Minsk : RUP NPC NAN Belarusi po mek- hanizacii sel'skogo hozyajstva, 2007. T. 2. pp. 75−80.

12. Zverev S. V. Tekhnika i tekhnologiya infrakrasnogo nagreva v zernopererabotke [Technique and technology of infrared heating in grain processing] // Mezhdunarodnaya nauchno-prakticheskaya konferenciya, posvyashchennaya pamyati Vasiliya Matveevicha Gor- batova. 2015. No 1. pp. 189−192.

13. Romalijskij V. S., Kartashov S. G. Podgotovka semyan zernobobovyh kul'tur k skarmlivaniyu v hozyajstvah [Preparation of grain legume crops seeds for feeding in farms] // Tekhnika i tekhnologii v zhivotnovodstve. 2012. No 3 (7). pp. 99−102.

14. Grohovich Yu., Lyaskovskij Ya. Mikronizaciya rastitel'nogo syr'ya [Micronisa- tion of vegetable raw materials] // Kombikormovaya promyshlennost'. 1995. No 5. pp. 19.

15. Syrovatka V. I. Potochnaya liniya mikronizacii furazhnogo zerna [In-line microni- zation line of feed grain] // Doklady Rossijskoj akademii sel'skohozyajstvennyh nauk. 2014. No 5. pp. 72−75.

16. Belov A. A., Sobchenko Yu. A. Obosnovanie aktual'nosti sovershenstvovaniya mikronizacii zernovyh kormov [Rationale for the relevance of improving the micronization of grain forage] // Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2019. No 8 (178). pp. 179−183.

17. Zverev C., Ligidov V. Povyshenie effektivnosti mikronizacii zerna [Increasing the efficiency of grain micronization] // Kombikorma. 2005. No 5. pp. 28.

18. Kochanov D. S. Analiz izmeneniya temperatury i vlazhnosti zerna v processe ego mikronizacii [Analysis of changes in temperature and humidity of grain in the process of its micronization] // Vestnik VGUIT. 2013. No 4 (58). pp. 18−21.

19. Krikunova L. N., Andrienko T. V., Chernyh V. YA., Lebedev A. V. Vliyanie IK- obrabotki zerna pshenicy i rzhi na parametry processa ego izmel'cheniya [Influence of infrared treatment of wheat and rye grain on parameters of grinding] // Izvestiya VUZov. Pishchevaya tekhnologiya. 2007. No 4. pp. 76−77.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-41-50

УДК 621.867.82:621.547.001.891

 

EKATERINA V. SAVELYEVA, Ph. D. of Engineering Sciences, Associate Professor

DMITRIJ A. LOMONOSOV, Ph. D. of Engineering Sciences, Associate Professor Primorskaya State Agricultural Academy, Russian Federation, Ussuriysk

ALEXANDER S. LOSEV, Ph. D. of Physico-Mathematical Sciences,
Associate Professor, Senior Research Officer Institute for Applied Mathematics Far Eastern Branch of the Russian Academy of Sciences, Russian Federation, Vladivostok

 

STUDY OF MATERIAL MOVEMENT IN THE ZONE ITS INFLOW IN THE DEVELOPED EJECTOR FEEDER OF THE DISCHARGE PNEUMATIC CONVEYING SYSTEM

Abstract. Topicality of the research is stipulated by the fact that at present the pneumatic conveying equipment makes up about 6...7 % of the total cost of continuous bulk materials transportation in the Russian Federation, i.e. the need of the economy in this mode of trans- portation is not satisfied in full, pneumatic conveying equipment is one of the most ad- vanced modes of transportation, since by its design and technological parameters it meets the strategic objectives, p A loading device was developed for the discharge pneumatic conveying system, the constructive and technological parameters of which will significantly reduce the pressure loss in the area of the incoming material at the expense of giving it an initial speed, at the dispersing section. In the article a theoretical substantiation of influ- ence of geometrical parameters of developed feeder of ejector type of discharge pneumatic system on speed of movement of grain material in a zone of its receipt is given. As a result, mathematical models of horizontal and vertical components of the flight path and the ve- locity of the grain material on the dispersal section have been obtained. It has been re- vealed that as a result of using the developed loading device for the discharge pneumatic conveying system there is an opportunity to increase productivity and reduce the destruction of grain.

Key words: ejector feeder, diffuser, confuser, loading device, material pipeline, conveying, air speed, dispersing section.

 

REFERENCES

1. Savel'eva E. V., Zdor D. V., Lomonosov D. A., Ostrovskaya I. E. Analiz i opre- delenie poter' davleniya v zone postupleniya sypuchego materiala v gorizontal'nyj materialo- provod s izbytochnym davleniem [Analysis and Determination of Pressure Losses in the Inlet Zone of Bulk Material in a Horizontal Material Pipeline with Excess Pressure] // Estestvennye i tekhnicheskie nauki. 2020. No 8. pp. 200−206.

2. Pat. No 2497342 Rossijskaya Federaciya, MPK7 A 01 D 41/00. Pnevmosistema zernouborochnogo kombajna dlya transportirovaniya produktov obmolota [Pneumatic system of grain harvester for transportation of threshing products] / Parinov V. F., Savel'eva E. V.; zayavitel' i patentoobladatel' FGBOU VPO «Primorskaya gosudarstvennaya sel'skohozyajst- vennaya akademiya». No 2012127023 ; zayavl. 27.06.2012 ; opubl. 10.11.2013, Byul. No 31.

3. Balacko L. D. Issledovanie processov transportirovaniya semyan pnevmaticheskim sposobom [Study of seed transportation processes by pneumatic method] // Trudy VIM. 1964. T. 34. pp. 40−68.

4. Zuev F. G. Pnevmaticheskoe transportirovanie na zernoobrabatyvayushchih predpriyatiyah [Pneumatic conveying at grain enterprises]. M. : Kolos, 1976. 344 p.

5. Kuznecov Yu. M. Pnevmotransport: teoriya i praktika [Pneumatic conveying: the- ory and practice]. Ekaterinburg : UrO RAN, 2005. 60 p.

6. Savel'eva E. V. Matematicheskoe modelirovanie dvizheniya zernovki po po-verhnosti lotka v zagruzochnom ustrojstve dlya zerna nagnetatel'noj sistemy v zerno-uborochnom kom- bajne [Mathematical modelling of grain movement on the surface of the tray in the loading device for grain discharge system in a grain harvester] // Estestvennye i tekhnicheskie nauki. 2019. No 8. pp. 174−180.

7. Pat. No 2333144 Rossijskaya Federaciya, MPK7 V 65 G 53/40. Zagruzochnoe ustro- jstvo nagnetatel'noj pnevmosistemy dlya transportirovki zerna v zernouborochnom kombajne [Loading device of pneumatic pressure system for grain transportation in grain harvester] / Pa- rinov V. F., Savel'eva E. V.; zayavitel' i patentoobladatel' FGBOU VPO «Primorskaya gosu- darstvennaya sel'skohozyajstvennaya akademiya». FGBOU VPO «Primorskaya gosudarstven- naya sel'skohozyajstvennaya akademiya». No 2006125162 ; zayavl. 12.07.2006; opubl. 10.09.2008; Byul. No 25.

8. Savel'eva E. V. Modelirovanie i optimizaciya processa pnevmotransportirovaniya v zagruzochnom ustrojstve dlya zerna v zernouborochnom kombajne [Modelling and optimisa- tion of the process of pneumatic conveying in a grain loading device in a grain harvester] // Estestvennye i tekhnicheskie nauki. 2015. No 10. pp. 174−180.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-51-56

УДК 631.372-192

 

ALESANDR M. BELOKOBYLSKIJ, Ph. D. of Engineering Sciences, Associate Professor

Penza State University of Architecture and Construction, Russian Federation, Penza


WAYS TO IMPROVE TRACTOR RELIABILITY

Abstract. Currently, there is a tangible shortage of wheeled all-wheel drive tractors in Russia. As a result, with a total need for wheeled tractors of traction classes 0,6−3 for 2010 it was about 520...530 thousand units, while in 2012 the need for tractors did not exceed 58 %. For normal replenishment of tractor fleet and its stable work the agriculture should buy up to 80 thousand tractors annually, and to increase their number at least to the minimum required amount this figure should be increased to 120 thousand, i. e. more than 5 times compared to the current level. The situation is not saved even by their purchase abroad, as well as the additional production of tractors by the enterprises that assemble tractors on ready-made units, operating in Russia. These are JSC "ElAZ", JSC "SAREKS", JSC "Buzuluk Mechanical Plant", JSC "Smolspetstech", which produce wheel tractors "Belarus" under license from RUE "MTZ". Thus, the agro-industrial complex (AIC) of the country faces a choice: either use their own, previously mastered and with known reliability tractors, or buy more expensive highly reliable foreign analogues. Under these conditions, the most rational solution would be to effectively use the capabilities of domestic manufacturers. The revival of domestic tractor building, in the first place, should be promoted by the early development in production of recently developed and practically ready designs of new or modernized highly reliable tractors with subsequent increase in their production to the required volume. To solve this problem, it is planned to analyze the ways to improve the reliability of domestic tractors, which will allow research institutes and manufacturers to create conditions for renewal of testing program to improve the reliability of promising models, on the principle of the 80−90th years, and on their basis to choose one or another model of high-reliability tractors.

Keywords: tractors, reliability, tests, element, system, structural scheme, redundancy.

 

REFRENCES

1. Markelov N. N. Razvitie konstrukcij sovetskih traktorov [Development of Soviet tractor designs] // Traktory i sel'hozmashiny. 1978. No 8.

2. Dmitrichenko S. S., Rotenberg V. A. Ravnoprochnost' mashin i ekonomiya ma- terialov [Equal strength of machines and economy of materials] // Traktory i sel'hozmashiny. 1980. No 3. pp. 1−2.

3. Nefedov A. Monitoring tekhnicheskogo urovnya perspektivnyh otechestvennyh traktorov dlya agrariev [Monitoring the technical level of promising domestic tractors for agrarians] // Osnovnye Sredstva. 2012. No 10. URL: https://os1.ru/article/4971-monitoring-tehnicheskogo-urovnya-perspektivnyh-otechestvennyh-traktorov-dlya-agrariev.

4. Ermolov E. S., Kryazhkov V. M., Cherkun V. E. Osnovy nadezhnosti sel'skohozyajst- vennoj tekhniki [Fundamentals of Reliability of Agricultural Machinery]. M. , 1974. 223 p.

5. Zhdanovskij N. S., Nikolaenko A. V. Nadezhnost' i dolgovechnost' avtotraktornyh dvigatelej [Reliability and Durability of Autotractor Engines]. L. : Kolos, 1981. 295 p.

6. Reshetov D. N., Ivanov M. A., Fadeev V. Z. Nadezhnost' mashin [Reliability of machines] / Pod red. D. N. Reshetova. M. : Vysshaya shkola, 1988. 238 p.

7. GOST 27.002−2015 Nadezhnost' v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya [Reliability in machinery. Basic concepts. Terms and definitions]. URL: http://www.internet-law.ru/gosts/gost/11290.

8. Belokovyl'skij A. M. Analiz ekspluatacionnoj nadezhnosti traktorov [Analysis of trac- tor operational reliability] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2020. No 2. pp. 70−75.

9. Belokovyl'skij A. M. Nadezhnost' avtomobil'nogo transporta [Reliability of road transport]: monografiya. Penza : PGUAS, 2018. 172 p.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-57-65

УДК 62-71:678.004.94

 

OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor,

Academician of the RAS

NIKOLAY A. BOLSHAKOV, Postgraduate

Russian Timiryazev State Agrarian University, Russian Federation, Moscow


MODELING OF AN AUTOMOBILE AND TRACTOR COOLING SYSTEM RADIATOR USING POLYMERIC MATERIALS

Abstract. An important element in the composition of a traction vehicle is a cooling system, which provides the required temperature of operating fluids in the gearbox and engine oil system and hydraulic system regardless of the engine operation mode and ambient condi- tions. Development of new effective cooling system components and materials with the specified thermal characteristics will also improve the thermal condition in the under-hood of the traction vehicle. The article analyzes the construction and peculiarities of thermal design process of radiator with polyurethane core, the approaches, methods, models and automation tools used. The list of basic optimization tasks to be solved in the process of thermal design of radiator with a polyurethane core on the basis of construction-thermal synthesis methods has been formulated. It is shown that a promising approach is the tran- sition from the "modeling-analysis-change of parameters and structure" problems to the solution of the tasks of thermal mode of a polyurethane core radiator as structural and parametric synthesis problems. Further steps in improving the efficiency of thermal design of a polyurethane core radiator aimed at obtaining the optimum thermal performance of the radiator or the optimum design parameters while ensuring a given thermal regime are defined. The base mathematical support, which includes mathematical models of thermal processes, the methods of solving thermophysical problems, methods of modeling and anal- ysis of the thermal characteristics of the design of the radiator with polyurethane core are analyzed and selected.

Key words: radiator with polyurethane core, calculation of temperature distribution over the height, thermal balance of the tube, calculation of instantaneous local heat fluxes.

 

REFRENCES

1. Putan A. A., Bizhaev A. V., Devyanin S. N. Ustanovka dlya ocenki effektivnosti raboty sistemy ohlazhdeniya isparitel'nogo tipa [Installation for Evaluating Efficiency of Evap- orative Cooling System] / V sb. : Chteniya akademika V. N. Boltinskogo (115 let so dnya rozh- deniya) / Pod red. M. N. Erohina. 2019. pp. 107−112.

2. Didmanidze O. N., Guzalov A. S., Bol'shakov N. A. Sovremennyj uroven' razvitiya dvigatelej s gazomotornoj i elektricheskoj silovoj ustanovkami na tyagovotransportnyh sredstvah [Modern level of development of gas and electric propulsion engines on traction ve- hicles] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. No 4. pp. 52−59.

3. Afanas'ev A. S., Hakimov R. T., Pechurin A. A. Temperaturno-dinamicheskie ispytaniya sistem kondicionirovaniya kabin avtotransportnoj tekhniki [Temperature-dynamic tests of cab air-conditioning systems for motor transport technique] / V sb. : Servis bezopasnosti v Rossii: opyt, problemy, perspektivy. Obespechenie kompleksnoj bezopasnosti zhizned- eyatel'nosti naseleniya: Materialy IX Vserossijskoj nauchno-prakticheskoj konferencii / Sankt-Peterburgskij universitet Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii. 2017. pp. 266−271.

4. Guzalov A. S., Didmanidze O. N., Devyanin S. N. Povyshenie effektivnosti raboty traktora putem sovershenstvovaniya raboty dvigatelya [Increase of tractor efficiency by im- proving the engine performance] / V sb. : Materialy mezhdunarodnoj nauchnoj konferencii mo- lodyh uchenyh i specialistov, posvyashchennoj 160-letiyu V.A. Mihel'sona. 2020. pp. 318−321.

5. Didmanidze O. N., Hakimov R. T., Parlyuk E. P., Bol'shakov N. A. Puti sovershenstvovaniya ohlazhdayushchih sistem pri ispol'zovanii metana v gazomotornyh dvigatelyah [Ways to improve cooling systems when using methane in gas engines] / V sb.: Doklady TSKHA. 2019. pp. 7−10.

6. Slepcov O. N., Os'kin I. A. Obzor i analiz osnovnyh konstruktivnyh skhem gibridnyh transportnyh sredstv i ustanovok [Review and analysis of basic design schemes of hybrid vehi- cles and installations] / V Sb.: Avtotransportnaya tekhnika XXI veka: Sbornik statej III Mezhdunarodnoj nauchno-prakticheskoj konferencii / Pod red. O. N. Didmanidze, N. E. Zim- ina, D. V. Vinogradova. 2018. pp. 92−98.

7. Tambovcev M. A., Andreev O. P. Modelirovanie imitacionnoj sistemy v real'nom vremeni upravleniya teploobmennymi processami [Simulation of simulation system in real time control of heat exchange processes] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2018. No 1. pp. 87−90.

8. Tojgambaev S. K., Bondareva G. I., Evgrafov A. V. Organizaciya i raschet uchastka tekhnicheskogo obsluzhivaniya i remonta mashin [Organization and calculation of the maintenance and repair of machines] // Sel'skij mekhanizator. 2020. No 12. pp. 44−45.

9. Chutcheva Yu. V., Pulyaev N. N., Korotkih Yu. S. Perspektivnye napravleniya razvitiya tyagovo-transportnyh sredstv dlya sel'skogo hozyajstva [Perspective directions of de- velopment of traction-transport means for agriculture] // Tekhnika i oborudovanie dlya sela. 2020. No 9 (279). pp. 2−5.

10. Goryachij interes k novejshim metodam ohlazhdeniya [Hot interest in the latest cool- ing methods]. URL: http://www.rlocman.ru/review/article.html?di=151013.

11. Shanin Yu. I. Teplootdacha kompaktnyh sistem ohlazhdeniya lazernyh zerkal [Heat transfer of compact cooling systems of laser mirrors] // Teplovye processy v tekhnike. 2015. No 4. pp. 166–171.12. Voinov A. N. Sgoranie v bystrohodnyh porshnevyh dvigatelyah [Combustion in high-speed piston engines]. M. : Mashinostroenie, 2018. 277 p.

12. Gridnev S. A., Kalinin Yu. E., Makagonov V. A., Shuvaev A. S. Perspektivnye termoelektricheskie materialy [Perspective thermoelectric materials] // Al'ternativnaya ener- getika i ekologiya. 2013. No 1. Ch. 2. pp. 117–125.

13. Vasil'ev L. L., Vasil'ev ml. L. L., Zhuravlev A. S., Kuz'mich M. A., Huuhenhuu B. Teplovye truby i termosifony dlya utilizacii vozobnovlyaemyh i vtorichnyh energoresursov [Heat pipes and thermosiphons for utilization of renewable and secondary energy resources] // XV Minskij mezhdunarodnyj forum po teplomassobmenu. Minsk, 2016. T. 3. pp. 309–312.

14. Razrabotana tekhnologiya ohlazhdeniya processorov s pomoshch'yu uglerodnyh na- notrubok [Processor cooling technology using carbon nanotubes has been developed]. URL: http://hi-news.ru/technology/oxlazhdeniem-mikroprocessorov-zajmutsya-uglerodnye-nаnotrubki.html.

15. Gogrichiani G. V., Gorin A. V. Metod rascheta veroyatnosti peregreva tep- lonositelej sistem ohlazhdeniya teplovoznyh dizelej [Method for calculating the probability of overheating of heat-carrying agents of diesel engine cooling systems] // Vestnik Nauchno-is- sledovatel'skogo instituta zheleznodorozhnogo transporta. 2013. No 1. pp. 60−66.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-66-73

УДК 62-83.001.89

 

ARTYOMBEK S. GUZALOV, Teaching Assistant

OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor,

Academician of the Russian Academy of Sciences Russian Timiryazev State Agrarian University, Russian Federation, Moscow


EXPERIMENTAL STUDIES OF ADDITIONAL SUPERCHARGING ON ENGINE D-260.2 WITH ELECTRIC DRIVE

Abstract. The paper considers the main direction in the development of diesel engines, in particular the engines of agricultural machinery. The efforts of engineers in the direction of developing modern, powerful and economical engines, providing uninterrupted opera- tion of the engines under all operating conditions, are summarized. The directions of re- search in the field of turbocharger are defined. The purpose of this work was to improve fuel economy and increase the performance of the engine D-260.2. The feasibility study was done, conducted calculations which include a set of mathematical and algorithmic models, resulting in a confirmed possibility of the electric compressor drive in the two- stage engine boost system and allows you to get a controlled boost. An "Installation for investigating characteristics of an electric drive auxiliary supercharger" to determine the required parameters of an "Additional electrically controlled supercharger" was created. A brief characteristic of the installation for the study of the characteristics of the electric- driven auxiliary supercharger is given. Experiments were carried out to remove and obtain the required characteristics, as well as tests on the battery oscillation. On the basis of the obtained flow characteristic a controlled electric supercharger was selected, the required power, geometric parameters and type of propeller on the shaft of a 5 kW commutatorless electric motor were determined. The results of the work have shown the effectiveness of using an additional supercharger with an electric drive.

Keywords: two-stage supercharger system, fuel efficiency, machine-tractor units, addi- tional controlled electrical supercharger, unsteady modes of engine operation.

 

REFRENCES

1. Sinyavskij V. V., Ivanov I. E. Forsirovanie dvigatelej i agregaty nadduva [Engine boosting and supercharging units]: Uchebnoe posobie. M. , 2016. 112 p.

2. Didmanidze O. N., Devyanin S. N., Guzalov A. S. Sposoby povysheniya moshchnosti dvigatelej traktorov [Ways to increase the power of tractor engines] / V sb.: CHt- eniya akademika V. N. Boltinskogo: Seminar : sbornik statej. М. : ООО «Megapolis», 2020. pp. 233−239.

3. Lashko V. A., Pospelov A. I. Izmenenie stepeni szhatiya – odin iz elementov soz- daniya adaptivnogo porshnevogo dvigatelya [Change of compression ratio is one of the ele- ments for creating adaptive piston engine] // Elektronnoe nauchnoe izdanie «Uchenye zametki TOGU». 2014. T. 5, No 1. pp. 307–310.

4. Didmanidze O. N., Guzalov A. S., Bol'shakov N. A. Sovremennyj uroven' razvitiya dvigatelej s gazomotornoj i elektricheskoj silovoj ustanovkami na tyagovo-transportnyh sredstvah [Modern level of development of gas and electric propulsion engines on traction ve- hicles] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. No 4. pp. 52−59.

5. Truhachev V. I., Didmanidze O. N., Devyanin S. N. Kakie sel'skohozyajstvennye traktory nuzhny zavtra Rossii? [What agricultural tractors do Russia need tomorrow?] / V sb.: Cht- eniya akademika V. N. Boltinskogo: Seminar: sbornik statej. M. : ООО «Megapolis», 2020. pp. 11−19.

6. Epifanov D. V. Metodika vybora tipa i harakteristik agregatov nadduva avtomo- bil'nogo DVS, udovletvoryayushchego perspektivnym ekologicheskim i ekonomicheskim trebo- vaniyam [Methodology for selecting the type and characteristics of automotive engine super- charger units that meet advanced environmental and economic requirements]: dis. ... kand. tekhn. nauk: 05.04.02 / Epifanov Dmitrij Vladimirovich. Nizhnij Novgorod, 2010. 156 p.

7. Lazarev A. V. Rezul'taty razrabotki reguliruemogo turboelektrokompressora [Results of development of an adjustable turbo-electric compressor (in Russian)] / A. V. Lazarev, V. N. Kaminskij, R. V. Kaminskij i dr. // Izvestiya MGTU MAMI. 2014. T 1. No 4 (22). pp. 47−50.

8. Dizel' D-260.1 i ego modifikacii [Diesel D-260.1 and its modifications] / Rukovod- stvo po ekspluatacii 260-0000100RE. Minsk, 2015. 90 p.

9. Dvigateli s izmenyaemoj stepen'yu szhatiya: ot Saab do Infiniti [Variable compression ratio engines: from Saab to Infiniti]. URL: https://dvizhok.su/parts/dvigateli-s-izmenyaemoj-stepenyu-szhatiya-ot-saab-do-infiniti.

10. Elektricheskij nagnetatel' vozduha sdelaet motor men'she, moshchnee i ekonomich- nee [Electric supercharger will make engine smaller, more powerful and economic] // Internet-zhurnal Ecoconceptcars – internet-zhurnal ob ekologicheskih in-novaciyah v avtomobile stroenii. URL: http://ecoconceptcars.ru/2011/12/elektricheskij-nagnetatel-vozduxa-sdelaet-motor-menshe-moshhnee-i-ekonomichnee.html.

11. Vidy nadduva DVS [Types of internal combustion engine boost] // Internet-zhurnal drive2. URL: https://www.drive2.ru/b/3141732/.

12. Kut'kov G. M. Tekhnicheskij uroven' i tekhnologicheskie svojstva traktora [Tech- nical level and technological properties of a tractor] / V sb. : Chteniya akademika V. N. Boltinskogo (115 let so dnya rozhdeniya): Sbornik statej seminara / Pod redakciej M. N. Eroh- ina. ООО «Megapolis», 2019. pp. 38−48.

13. Devyanin S. N., Shchukina V. N. Sistemy upravleniya v DVS [Control systems in ICE /]/ V sb. : Doklady TSKHA: Sbornik statej. 2016. pp. 39−43.

14. Mozer F. K. Dizel' v 2015 godu. Trebovaniya i napravleniya razvitiya tekhnologij dizelej dlya legkovyh i gruzovyh avtomobilej [Requirements and directions of development of diesel technologies for cars and trucks] // Zhurnal avtomobil'nyh inzhenerov. 2018. No 4 (51). pp. 54–62.

15. Kaminskij V. N. Kompressor s elektroprivodom v mnogostupenchatyh sistemah nadduva / V. N. Kaminskij, S. V. Sibiryakov, I. N. Grigorov i dr. // Nauchno-publicisticheskij zhurnal «Naukograd». 2017. No 2 (12). pp. 7−18.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-74-82

УДК 631.15.001.57

 

NATAL'YA А. MOCHUNOVA, Ph. D. of Engineering Sciences,
Associate Professor

MARTIK A. KARAPETYAN, Advanced Doctor in Engineering Sciences,
Professor Russian Timiryazev State Agrarian University, Russian Federation, Moscow

VADIM N. PRYAHIN, Advanced Doctor in Engineering Sciences, Professor
Dubna University, Russian Federation, Dubna

 

STUDY OF CONTROL SYSTEMS OF AGRICULTURAL FACILITIES AGRICULTURAL PRODUCTION

Abstract. The main components of the management system are considered. The classification of the control system of the objects of agro-industrial complex is presented. The process of adaptive control of the mechanical control system has been studied. The main regularities inherent in the control systems of agricultural production objects are consid- ered. The results of the research of the systems with adaptive control of dynamic agricul- tural and industrial production objects have been given. The analysis of technical means and methods of hydromeliorative objects protection is given. The methods of research of control systems of agricultural objects by means of functional analysis and synthesis are given. The purpose of studying dynamic parameters and characteristics of the systems tak- ing into account changes of its states on the basis of the adopted control algorithms is determined. The planning of the experiment when searching for the optimum conditions of various tests of agricultural machinery has been considered. Spatial distribution of failures occurring in stochastic systems has been studied. The variants of probabilistic forecasting under industrial and agricultural production conditions are presented. It was established that functional analysis and synthesis research objects are control methods and algorithms implemented by the system and aimed at performing individual stages and technological processes of industrial and agricultural production. On the basis of probability theory the variants of mass service systems as applied to various test conditions are considered.

Keywords: adaptive control, elements of control systems, theory of mass service, mechan- ical system, efficiency criterion, control object, agro-industrial complex, adaptive system, planning of experiments, distribution of failures, theory of probabilities.

 

REFRENCES

1. Myl'nik V. V., Titarenko B. P., Volochienko V. I. Issledovanie sistem upravleniya [Study of control systems]: uchebnoe posobie dlya vuzov. 3-izd. M. : Akademicheskij prospekt; Trista, 2004. 352 p.

2. Karapetyan M. A., Pryahin V. N. Tekhnicheskie sredstva i metody zashchity gidro- meliorativnyh ob"ektov [Technical Means and Methods of Hydromeliorative Objects Protec- tion]: uchebnoe posobie. M. : Kompaniya «Sputnik+», 2004. 151 p.

3. Muhin V. I. Issledovanie sistem upravleniya [Research of control systems]: uchebnik dlya vuzov. M. : Ekzamen, 2003. 384 p.

4.Karapetyan M. A., Pryahin V. N., Subbotin V. E. Adaptivnoe upravlenie di-nam- icheskimi ob"ektami sel'skohozyajstvennogo proizvodstva [Adaptive Management of Agricul- tural Production Dynamical Objects] // Vestnik Mezhdunarodnoj obshchestvennoj akademii ekologicheskoj bezopasnosti i prirodopol'zovaniya (MOAEBP). 2008. Vyp. 3 (10). pp. 97−100.

5. Pryahin V. N., Solov'ev S. S. Bezopasnost' zhiznedeyatel'nosti v prirodoobustrojstve [Life Safety in Nature Management: Course of Lectures and Set of Test Tasks for Students of Higher Education Institutions]: Kurs lekcij i komplekt testovyh zadanij dlya studentov vuzov: uchebnoe posobie. 3-e izd., ispr. i dop. SPb. : Lan', 2009. 352 p.

6. Bol'shakov N. A., Zilonov M. O., Pryahin V. N. Prostranstvennye raspredeleniya otkazov, voznikayushchie v stohasticheskih sistemah [Spatial distributions of failures arising in stochastic systems]. M. : Nauka, 2003. Vyp 4. pp. 111−113.

7. Bol'shakov N. A., Zilonov M. O., Pryahin V. N. Veroyatnostnoe prognozirovanie v usloviyah sel'skohozyajstvennogo proizvodstva [Probabilistic forecasting in conditions of ag- ricultural production] // Aspirant i soiskatel'. 2003. No 5. pp. 213−215.

8. Pryahin V. N., Karapetyan M. A., Makarova E. V. Metody sistem so sluchajnymi parametrami primenitel'no v ob"ektah APK [Methods of systems with random parameters ap- plied in the objects of agroindustrial complex] // Vestnik Mezhdunarodnoj obshchestvennoj akademii ekologicheskoj bezopasnosti i prirodopol'zovaniya. 2008. Vyp. 1(8). pp. 92−93.

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-83-97

УДК 629.35:656.1.005.591.6

 

ANDREY S. SHKEL, Ph. D. of Engineering Sciences, Associate Professor\

MIREA – Russian Technological University, Russian Federation, Moscow

 

NEW UPGRADE OPTION FOR THE URAL-432065 TRUCK FOR TRANSPORT-TECHNOLOGICAL COMPLEXES

Abstract. In the domestic agriculture tractor transportation makes up to 27 % of the total volume of transport works and 45 % of the volume of intrafarm transportation. In our conditions such transportation is of low efficiency because of relatively long distances and its cost is higher than that of automobile transportation. The relevance of creating and producing specialized vehicles for agricultural purposes is beyond doubt. In 2010 the Fed- eral State Budgetary Educational Institution of Higher Professional Education of the Mos- cow State Agrarian University named after V. P. Goryachkin order by GAZ Group with the participation of GNU FNATs VIM and NIIKA LLC, comprehensive R&D work was carried out to create a 4x4 agricultural truck with a payload of 5...6 tonnes, Ural-432065 with a GAZ standard cabin. In November 2012 the vehicle was assembled on the main conveyor of OJSC "Automobile Plant "URAL". However, in 2013 the GAZ Group management de- cided to unify the "Gazelle Next" cabin for all trucks of the Group and serial production of the new vehicle was discontinued. In the meantime, the problem of forming transport and technological complexes in the agro-industrial complex (AIC) on the basis of a specialized cargo vehicle such as Ural-432065 has not been solved. Because of that transport-techno- logical complexes, created under the State contract 1 12411.0816900.20.100 from 02.05.2012, signed by the Ministry of Industry and Trade of Russia with FSBEI V.P. Goryachkin Moscow State Agrarian University, were not solved. P. Goryachkin on the topic: "Development and creation of prototypes, and research of technological adapters on the chassis of a new family of trucks with payload capacity of 5-6 tons" (Cipher "AVT- 12-020") remained in serial production without a base vehicle.A plan of action ("road map") has been developed, according to which the modernization version of the Ural- 432065 is offered with a modified Next cab. In this case the new cabin undergoes structural changes, but on the Ural-432065 it is installed on standard seats, there is no need to modify or change the front bumper, the dimensions and functionality of the vehicle remain the same. The proposed version of the modernized vehicle can be used not only in the agricul- tural sector but also in other areas of management.

Keywords: agricultural truck, transport-technological complexes, agro-industrial com- plex, modernization of the cabin.

 

REFRENCES

1. Innovacionnoe razvitie transportnoj sfery agropromyshlennogo komplek-sa: monografiya / A. Yu. Izmajlov, N. E. Evtyushenkov, T. D. Dzocenidze, A. G. Levshin, S. N. Galkin. M. : VIM, 2011. 232 p.

2. Galkin S. N. Obosnovanie tekhnologicheskih i konstruktivnyh parametrov avtomobilya sel'skohozyajstvennogo naznacheniya s kolesnoj formuloj 4×4 i gruzopod"emnost'yu 5...6 t: dis. ... kand. tekhn. nauk : 05.20.01 / Galkin Sergej Nikolaevich / FGBOU VPO MGAU imeni V. P. Goryachkina, 2011. 155 p.

3. Rekomendacii po ispol'zovaniyu gruzovyh avtomobilej vysokoj prohodimosti gruzo- pod"emnost'yu 5...6 t v sostave tekhnologicheskih adapterov i vnutri tekhnologicheskih processov sel'skohozyajstvennogo naznacheniya: proizvodstvenno-prakticheskoe izdanie / M. N. Erohin, A. Yu. Izmajlov, S. N. Galkin, N. E. Evtyushenkov, A. A. Artyushin, A. G. Levshin, T. D. Dzocenidze, G. A. Kalinkin, M. L. Kryukov, N. A. Majstrenko. M. : Metal- lurgizdat, 2010. 28 p.

4. Specializirovannyj avtomobil'nyj transport sel'skohozyajstvennogo naznacheniya: monografiya / T. D. Dzocenidze, S. N. Galkin, A. G. Levshin, M. A. Kozlovskaya, V. N. So- rokin, P. V. Sereda. M. : OOO «NIIKA», ZAO «Metallurgizdat», 2013. 368 p.

5. Shkel' A. S. Analiz otechestvennogo i zarubezhnogo opyta primeneniya smennyh tekhnologicheskih nadstroek na baze shassi gruzovyh avtomobilej sel'skohozyajstvennogo naznacheniya // Trudy NAMI. 2016. No 264. pp. 116−131.

6. Shkel' A. S. K voprosu ob effektivnom ispol'zovanii tekhnologicheskih nadstroek v sostave avtomobilya Ural-432065 sel'skohozyajstvennogo naznacheniya // Trudy NAMI. 2016. No 3(266). pp. 73−82.

7. Prostranstvennye nesushchie sistemy karkasnoj skhemy dlya tekhnologicheskih nadstroek sel'skohozyajstvennogo naznacheniya / A. S. Shkel', D. A. Zagarin, M. A. Koz- lovskaya, T. D. Dzocenidze // Traktory i sel'hozmashiny. 2016. No 4. pp. 19−23.

8. Majstrenko N. A. Obosnovanie parametrov transportno-tekhnologicheskogo adaptera dlya vneseniya mineral'nyh udobrenij na baze avtomobilya sel'skohozyajstvennogo naznacheniya: dis. ... kand. tekhn. nauk : 05.20.01 / Majstrenko Nikolaj Aleksandrovich / FGBOU VO RGAU−MSKHA imeni K. A. Timiryazeva, 2017. 200 p.

9. Dzotsenidze T. D., Zagarin D. A., Shkel' A. S., Kozlovskaya M. A. Use of Special High-rigidity Profiles in the Load-bearing Systems of Tractors and Automobiles at the Magni- togorsk Metallurgical Combine // Metallurgist, Vol. 60, No. 5-6, September, 2016, pp. 555−558. DOI 10.1007/s11015-016-0330-7.

10. Zagarin D. A., Dzotsenidze T. D., Kozlovskaya M. A., Shkel' A. S., Rodchenkov D. A., Bugaev A. M., Pugin G. M. Strength of a Load-Carrying Steel Frame of a Mobile Wheeled Vehicle Cabin. Metallurgist 64, 476−482 (2020). https://doi.org/10.1007/s11015-020-01017-5.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-98-106

УДК 631.173

 

SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 

DEVELOPMENT OF THE TECHNOLOGICAL PROCESS FOR MAINTENANCE OF THE FARM'S MACHINE AND TRACTOR FLEET

Abstract.The paper considers the concept of maintenance, its objectives, peculiarities of organization, management and planning. At the modern stage much attention is given to the improvement of the organization and management of the process of maintenance and repair of agricultural machinery. Introduction of the centralized management of the process of maintenance and repair at the tractor service station (TSS) by means of creation of the control organization point at the tractor service station is offered. The article analyses the dependence of the maintenance and repair process on the equipment level of the repair-technical enterprise, the qualification of executors, etc. The algorithm of the development of the technological process of maintenance of the tractor T-150 is presented. Formulas for determining the frequency of repairs and maintenance of tractors in the reporting year are given. An example of calculation of labour input of maintenance. The order of choosing the form of organization of maintenance is given. An example of calculating the requirements for personnel and maintenance facilities is given. Calculation of the parameters of the maintenance and diagnostics of tractors is presented. The conclusion about the necessity of implementing the system of agricultural machinery diagnostics due to the lack of proper control when carrying out technical maintenance of tractors has been made. It has also been suggested to establish the stricter control of the quality of the fulfilled maintenance and repair works, of the state of the machinery during its storage, to plan the kinds of maintenance.

Keywords: tractor, periodicity, maintenance, labour input, service station, technological process, equipment of repair-technical enterprise.

 

REFRENCES

1. Varnakov V. V., Strel'cov V. V, Popov V. N., Karpenkov V. F. Organizaciya i tekhnologiya tekhnicheskogo servisa mashin: Uchebnik. M. : KolosS, 2007. р. 278.

2. San'kov V. M., Evgrafov V. A., Yurchenko N. I. Osnovy ekspluatacii transportnyh i tekhnologicheskih mashin i oborudovaniya: Uchebnik. M. : Kolos, 2001. р. 254.

3. Tojgambaev S. K., Evgrafov V. A. Opredelenie trudoemkosti diagnostirovaniya avtomobilej // Estestvennye i tekhnicheskie nauki. 2019. No 12 (138). 74 р.

4. Tojgambaev S. K., Evgrafov V. A. Vybor kriteriev optimizacii pri reshenij zadach po komplektovaniyu parka mashin proizvodstvennyh sel'skohozyajstvennyh organizacii // Doklady TSKHA: Sbornik statej. Vyp. 291. ch. II. M. : RGAU−MSKHA, 2019. 674 рр.

5. Tojgambaev S. K. Matematicheskoe modelirovanie optimizacii parka mashin i pov- ysheniya nadezhnosti ekspluatacii // Aspirant i soiskatel'. 2015. No 5 (89). рр. 102−106.

6. Tojgambaev S. K., Sokolov O. K. Optimizaciya parametrov uchastka TO i remonta mashino-traktornogo parka / V Sb. : Vestnik mezhdunarodnoj obshchestvennoj akademii ekologicheskoj bezopasnosti prirodoobustrojstva (MOAEBP). M. , 2020. рр. 5−21.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-107-115

УДК 621.548

 

SERGEY A. ANDREEV, Ph. D. of Engineering Sciences, Associate Professor

NIKOLAY A. SHEVKUN, Ph. D. of Agricultural Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

 

JUSTIFICATION OF BALANCING SYSTEM PARAMETERS SYSTEM IN WIND ENGINES WITH MUTUALLY PERPENDICULAR SHAFTS

Abstract.The principle of operation of some modern wind engines is based on the use of force properties of wind. The energy efficiency of such wind engines is not high, but they are characterized by a high starting torque, which in some cases greatly simplifies their practical application. Varieties of such wind turbines are designs with periodically chang- ing the active surface of the blades. Among them, a special place is occupied by wind tur- bines with mutually perpendicular shafts. During the operation of such wind turbines, the blades are periodically removed from the zone of wind influence, which is achieved by turning them relative to the horizontal shaft and turning the edge to the wind flow. In mod- ern wind engines with mutually perpendicular shafts the spatial reorientation of the blades requires energy, which reduces their efficiency. The design of widespread wind-motor with mutual perpendicular shafts is considered in the article, the equations of rotating moments, acting on the blades concerning horizontal and vertical shafts are composed and analyzed. It has been established that for satisfactory work of the known wind-motor the wind velocity should be more than a square root of the quotient of division of two products. The first product (divisor) consists of factors: gravity and the difference of sine and cosine of the angle formed by the side of the rising blade with the vertical shaft. The second product (divisor) is the surface of the blade, the drag coefficient, and the air density. It is shown that to reduce the required wind speed, it is advisable to equip the wind turbine with a balancing system. Balancing system consists of two counterweights made in the form of rods with weights fixed on their ends. Each rod is mounted on a horizontal shaft on the opposite side of the corresponding blade in the same plane as the blade. The pin is mounted on the horizontal shaft, and at the end of the pin there is an elastic plate with the possibility of resting in the vertical shaft. The basic advantage of the wind-motor with mutually per- pendicular shafts and balancing system is an increased efficiency of wind energy use, which allows exploiting it at a weak or super-weak wind (at wind velocity of 1...2 m/s).

Keywords: wind turbine, wind power properties, conversion efficiency, balancing system, counterweights

 

REFRENCES

1. Werne D. F. Wind power equipment. London; New-York, 1983.

2. Fateev E. M. Vetrodvigateli i vetroustanovki [Wind turbines and wind turbines] // OGIZ Gosudarstvennoe izdatel'stvo sel'skohozyajstvennoj literatury. M. , 1948. 544 p.

3. Tveritin A. V. Ispol'zovanie vetroenergeticheskih ustanovok v sel'skom hozyajstve [The use of wind power installations in agriculture] / VASKHNIL; VNII VASKHNIL, VNII in- form. i tekhn.-ekon. issled. po sel'skomu hoz-vu). M. : VNIITEISKH, 1985. 60 p.

4. Haritonov V. P. Avtonomnye vetroelektricheskie ustanovki [Autonomous wind power installations]. M. : GNU VIESKH, 2006. 280 p.

5. Shefter Ya. I., Rozhdestvenskij I. V. Izobretatelyu o vetrodvigatelyah i ve- troustanovkah [To the inventor about the windmills and wind-driven installations (in Russian)] // Izdatel'stvo ministerstva sel'skogo hozyajstva SSSR. M. , 1957. 145 p.

6. Vetrodvigatel' [Windmill]. Zayavka na izobretenie Pol'skoj narodnoj respubliki No 268664, kl. F 03 D.

7. Pat. 144542 Rossijskaya Federaciya, MPK F 03 D 7/06 (2006.01) Vetrodvigatel' so vzaimno-perpendikulyarnymi valami [Wind motor with mutually perpendicular shafts] / An- dreev S.A.; zayavitel' i patentoobladatel' Andreev Sergej Andreevich. No 2013145580/06 ; za- yavl. 11.10.2013 ; opubl. 27.08.2014, Byul. No 24.

8. Andreev S. A. Staticheskoe uravnoveshivanie lopastej karusel'nyh vetrodvigatelej [Static balancing of blades of carousel wind turbines] // Primenenie elektroenergii v eksplu- atacii ustrojstv sistem elektrosnabzheniya sel'skogo hozyajstva: Sbornik nauchnyh trudov Mos- kovskogo gosudarstvennogo agroinzhenernogo universiteta imeni V. P. Goryachkina. M. , 1993. pp. 77−85.

9. Strizhinskij V. M. Teoreticheskaya mekhanika [Theoretical Mechanics]. Kratkij kurs po polnoj programme vtuzov. M. : Nauka. Glavnaya redakciya fiziko-matematicheskoj literatury, 1980. 464 p.

 

_________________________________________________________________________________________________________________________________

 

DOI: 10.34286/1995-4646-2021-77-2-116-124

УДК 620.9.003.13

 

ALEKSEY S. EVMENCHIK, Postgraduate

Polzunov Altai State Technical University, Russian Federation, Barnaul

 

STUDY OF THE EFFICIENCY OF ENERGY COMPLEXES BASED ON RENEWABLE ENERGY SOURCES FOR INTEGRATED POWER SUPPLY TO REMOTE CONSUMERS

Abstract.The article is devoted to the study of the efficiency of using energy complexes based on renewable energy sources for power supply to remote consumers. Particular at- tention is paid to the total cost of electricity, as well as the growth of the profitability of wind and solar power plants, which indicate that alternative energy sources have broad prospects and significant potential for return for autonomous objects, which in turn prede- termines the need to substantiate the technical and economic feasibility of creating trans- portation systems electricity for such facilities. Experimental calculations were carried out on the example of the use of geothermal waters for power supply of the greenhouse, during which the structure of costs for the installation of a "turnkey" heat pump system was ana- lyzed. The savings in energy supply and heating by a water / water heat pump were also calculated as compared to a gas boiler. The results obtained made it possible to establish that the level of costs when using heat pumps in comparison with gas is reduced by about 50%. In addition, the article discusses the efficiency of using monocrystalline solar cells to meet the needs of a gas station. The resulting indicators indicate that the project for the use of solar energy at a gas station with the current green tariff will pay off in 37 years.

Keywords: power supply, greenhouse, gas station, solar battery, geothermal water, pump, gas.

 

REFRENCES

1. Strelkova I. A., Harmakshanova E. V. Al'ternativnye istochniki energii kak faktor razvitiya mirovoj energetiki [Alternative energy sources as a factor of world energy develop- ment] // Ekonomika i upravlenie: problemy, resheniya. 2020. T. 2. No 7. pp. 158−165.

2. Ahmed Abdulkadir Abdulsalam Smart‐grid and solar energy harvesting in the IoT era: An overview // Concurrency and computation: practice and experience. 2021. Volume 33: Number 4; pp. 12−17.

3. Ratner S. V., Sal'nikova A. A. Voprosy maksimizacii polozhitel'nyh effektov inno- vacionnyh proektov po intellektualizacii energosetej [Issues of maximizing the positive effects of innovative projects for power grid intellectualization] // Nacional'nye interesy: prioritety i bezopasnost'. 2019. T. 15. No 3 (372). pp. 548−563.

4. Bianchini Alessandro Optimization of a PV-wind-Diesel Hybrid System for a Re- mote Stand-alone Application // Energy procedia. 2015. Vol. 81. pp. 133−145.

5. LCOE alternatives: system value and other profitability metrics / Philipp Beiter: Na- tional Renewable Energy Laboratory, 2020. 287 p.

6. The Nordic dimension of energy security / Ryszard M. Czarny. Cham: Springer, 2020. 282 p.

7. Melekhin A. A. Issledovanie raboty teplovogo nasosa [Investigation of Heat Pump Operation] // Estestvennye i tekhnicheskie nauki. 2020. No 1 (139). pp. 189−191.

8. Daudova A. A., Volodina I. N., Zaharova O. L., Avdeeva S. M. Energeticheskie proekty na osnove vozobnovlyaemyh istochnikov energii: ekonomicheskaya znachimost' i razvi- tie [Energy projects on the basis of renewable energy sources: economic significance and de- velopment] // Problemy ekonomiki i upravleniya neftegazovym kompleksom. 2020. No 4 (184). pp. 20−25.

9. Zelenyj tarif v mire: stoimost' prodazhi elektroenergii po stranam [Green Tariff in the World: Cost of Electricity Sales by Country]. URL: https://generacia.energy/ru/interes-noe/zt-mir-03012020/.

10. The POWER Project. URL: https://power.larc.nasa.gov/.

 

_________________________________________________________________________________________________________________________________