Usachev A. P., Rulev A. V., Shuraytc A. L., Pikalov A. A.

Development of the principles of layout and calculation of the energy-saving decentralized heat supply system for gas purification units


Rusina A. G., Gerasimenko A. S., Samoylov A. A., Sergeeva M. M.
Evaluating the feasibility of using mini-CHPS to supply power to the wood processing industry


Bogatyrev A. V.
EA method of controlling pump units based on variable frequency drives for industrial reduction of energy resources





Blinov S. E., Shemyakin A. V.
Application of nature-like technologies for cleaning agricultural machinery in the agro-industrial sector


Anashin D. V., Andreev S. A.
Optimization of two-shaft devices for cutting plants


Onuchin E. M., Kubanychbekov D. K.
Development of a universal manure spreader for cattle


Samoilov A. L.
Peculiarities and prospects for improvement of measuring vessel calibration processes in milking parlors


Putan A. A., Devyanin S. N
Mathematical model of the operation of a heat recuperator for animal husbandry at low temperatures


Yurchenko I. F.
Organizational support as a factor of successful automation of agromeliorative technologies of the crop system


Aikimbaeva D. D., Kalabay R. T., Sarsenbayev E. A.
The optimum organization of the technological process within the framework of increasing the efficiency of the enterprise management


Pryahin V. N., Kryukov Y. A., Karapetyan M. A.
Modeling of mass service systems for maintenance of energy and information compexes


Bolshakov N. A., Didmanidze O. N.
Improving the efficiency of agricultural transportation


Didmanidze O. N., Guzalov A. S., Gusev I. P.
Determination of optimal design parameters of compressor, turbine stages and running gear of supercharging system units


Guzalov A. S., Didmanidze O. N., Devyanin S. N
Computational studies of two-stage diesel supercharger with first-stage control


Tojgambaev S. K.
Justification of the area of the engine repair site for enterprises of the Kostanay region



















DOI: 10.34286/1995-4646-2021-78-3-7-14

УДК 621.577+621.565.93/.95


ALEKSANDR P. USACHEV, Advanced Doctor in Engineering Sciences, Professor

ALEKSANDR V. RULEV, Advanced Doctor in Engineering Sciences, Associate Professor, Professor Yuri Gagarin State Technical University of Saratov, Russian Federation

Federal State Budgetary Institution "Russian Energy Agency" of the Ministry of Energy of the Russian Federation, Moscow, Russian Federation

ALEKSANDR L. SHURAYTC, Advanced Doctor in Engineering Sciences, Professor, General Director JSC design Institute Giproniigaz, Saratov, Russian Federation

ALEKSANDR A. PIKALOV, Director Saratov Regional Center for Expertise in Construction, Saratov, Russian Federation



Abstract. The article is devoted to the development of principles of layout and calculation of saving decentralized heat supply system of gas purification units. Two stage cylindrical units are widely used now in heat-consuming systems of natural gas purification units which are located in separate shells of coarse and fine purification and have considerable dimensions, metal intensity and require large areas of enclosing constructions for their location and consumption of heat energy for their heat supply. A new principle of location of cylindrical filtering elements for fine and coarse purification inside one another at minimum distance δ in the volume of one housing when the throughput capacity is not reduced and maximum saving of heat for heat supply of the two-stage cylindrical unit is ensured was developed for the purpose of resource and energy saving. The equations for determination of thermal capacity taking into account new principles of energy-saving arrangement of cylindrical elements of coarse and fine purification inside each other are derived. The annual saving of useful energy carrier for heat supply determined according to the offered formula by comparing the offered and existing versions amounts to 45 % a year. A good coincidence of theoretical and experimental data makes it possible to recommend using the proposed formula in engineering practice.

Keywords: heat supply, gas purification, energy supply, energy saving, energy carrier, filtering elements, heat losses.



1. Promyshlennoe gazovoe oborudovanie [Industrial Gas Equipment]: spravochnik. 6-e izd., pererab. i dop. Saratov : Gazovik, 2013. 1125 p.

2. Guo B., Ghalambor A. Natural Gas Engineering Handbook: 2nd edition / Gulf Publishing Company, Houston, Texas, 2012. XX, 472 p.

3.  Liu Z. Improved design of two-stage filter cartridges for high sulfur natural gas purification // Separation and Purification Technology. 2018. T. 198. pp. 155−162.

4. Usachev A. P. Teoreticheskie i prikladnye osnovy povysheniya effektivnosti i bezopasnosti ekspluatacii ustanovok gruboj ochistki prirodnogo gaza ot tverdyh chastic v sistemah gazoraspredeleniya [Theoretical and applied bases of increasing the efficiency and safety of operation of natural gas coarse particle scrubbing installations in gas distribution systems]: monografiya / A. P. Usachev, S. V. Gustov, A. L. Shurajc [i dr.]. Saratov : Sarat. gos. tekhn. un-t, 2013. 172 p.

5. Gustov S. V., Usachev A. P. Opredelenie optimal'noj velichiny otnosheniya vysoty k diametru korpusa fil'tra, razmeshchaemogo v obogrevaemom pomeshchenii [Determination of the optimal value of the ratio of height to diameter of the filter housing, placed in a heated room] // Energoeffektivnost'. Problemy i resheniya: materialy XIV Vseros. nauch.-prakt. konf. Ufa: IPTER, 2014. pp. 245–247.

6. S.p.A. «Pietro Fiorentini». Cartridg filters HFA/60TRC. Milano, Italy – Via Rosellini, 1. pp. 47.

7. Wang X. Advanced Natural Gas Engineering / M. Economides. Gulf Publishing Company, 2013. 400 p.

8. Sutherland K. Filters and Filtration Handbook − 5 edition / Elsevier Science, 2008. 523 p.

9. Trevor S. Filters and Filtration Handbook − 5 edition / Elsevier Butterworth Heinemann, 2016. 444 p.


DOI: 10.34286/1995-4646-2021-78-3-15-26

УДК 621.311.22:630*851-02


ANASTASIA G. RUSINA, Advanced Doctor in Engineering Sciences, Associate Professor, Head of the Department

Novosibirsk State Technical University, Russian Federation, Novosibirsk




National Research University Moscow Power Engineering Institute, Russian Federation, Moscow



Abstract. The technical solution considered in the article is based on the design and construction of an industrial enterprise of modular type for the processing of wood waste. The paper considered the method of power supply of this enterprise − it was decided to carry out electrification at the expense of an autonomous mini-CHP, working on biofuel. To reduce capital costs, expenses and increase territorial maneuverability of TPP it is proposed to use block-modular configuration structures made of sandwich panels [1]. In this study the authors consider 3 options for power supply of the designed enterprise for processing of wood waste: power supply from an external energy system with the construction of a power line; power supply from an autonomous energy center, which includes diesel generators; power supply from a modular mini-cogeneration plant, which uses waste from woodworking as fuel. The article also considers the implementation of a set of measures aimed at eliminating the environmental problem caused by deforestation. The existing system of using forest resources in the Russian Federation is considered, the main factors associated with the emergence of a number of environmental problems are identified, and a technical solution for eliminating this situation is proposed. The calculation of the feasibility study of the project is made and the existing risks of this project are formulated.

Keywords: distributed generation, isolated power systems, forest industry, pellets, improving the environmental friendliness of the industrial process, waste-free production.



1. Sistemnyj operator Edinoj energeticheskoj sistemy: Deyatel'nost': EES Rossii [System Operator of the Unified Energy System: Activity: UES of Russia]. URL:

2. Investicionnye proekty: cifrovaya platforma. Stroitel'stvo lesoperera-batyvayushchego bezothodnogo kompleksa [Investment projects: digital platform. Construction of timber processing non-waste complex]. URL:

3. Raspredelennaya energetika v Rossii: potencial razvitiya [Distributed Energy in Russia: Development Potential] / Energeticheskij centr Moskovskoj shkoly upravleniya SKOLKOVO. M., 2018.

4. Udincev D. N., Shvedov G. V., Milovanov P. K., Sergeeva M. M., Ityashev R. A. Formirovanie nagruzki v izolirovannyh energosistemah i sistemah, soderzha-shchih raspredelennuyu generaciyu [Load shaping in isolated power systems and systems containing distributed generation] // Novoe v rossijskoj elektroenergetike, 2021. № 5. pp. 22−30.

5. Tarify na elektroenergiyu v Krasnoyarskom krae [Tariffs for electric power in Krasnoyarsk Kray]. URL:

6. Raschet orientirovochnyh zatrat na tekhnologicheskoe prisoedinenie [Calculation of approximate costs for technological connection]. URL:

7. Shvedov G. V., Udincev D. N., Koroleva E. S., Merzlikin A. B. Ocenka potenciala vyrabotki elektroenergii iz othodov zhiznedeyatel'nosti cheloveka v sistemah elektrosnabzheniya gorodov [Evaluation of the potential of electricity generation from human waste in the power supply systems of cities (in Russian)] // Elektroenergiya. Peredacha i raspredelenie. 2020. № 3(60). pp. 24−28.

8. Promyshlennye kotly i kotel'nye «Teploresurs»: avtomatizirovannye kotel'nye na biotoplive [Industrial boilers and boiler houses "Teploresurs": automated boilers for biofuel]. URL:

9. Pravila ustrojstva elektroustanovok [Rules for Electrical Installations] / Glavgosenergonadzor Rossii. 7-e izd, pererab. i dop., s izm. M. : Energoatomizdat, 2004. 687 p.

10. NTP EPP−94. Proektirovanie elektrosnabzheniya promyshlennyh predpriyatij [NTP EPP-94. Design of power supply for industrial enterprises] / TYAZH Promelektroproekt imeni F. B. Yakubovskogo. M. , 1994.

11. Blochno-modul'nye kotel'nye EnergieBox [Block-Modular Boiler Houses EnergieBox]. URL:

12. VNiR V17−13. Sbornik vedomstvennyh norm i rascenok na stroitel'nye, montazhnye i remontno-stroitel'nye raboty [VNiR V17-13. Collection of Departmental Norms and Charges for Construction, Installation, Repair and Construction Works] / RAO «EES Rossii» Minenergo Rossii. M. , 2006.

13. GSniPIV-6−84. Prilozhenie. Sborniki rascenok na montazh oborudovaniya. Sb. 8. Elektrotekhnicheskie ustanovki [GSNIP IV-6-84. Appendix. Collections of Rates for Installation of Equipment. Sb. 8. Electrical installations] / Gosstroj SSSR. M. : Strojizdat, 2009. pp. 191.



DOI: 10.34286/1995-4646-2021-78-3-27-35

УДК 62-83-52


ALEXEY V. BOGATYREV, General Director Teploenergoexpert LLC, Russian Federation, Moscow



Abstract. The problem of noise suppression of production mechanisms is urgent and requires modern solutions, especially at large industrial enterprises. Pressure pulsations in pump systems are the sources of production noise and affect the accuracy and efficiency of its operation. The article considers the pump control system on the basis of the frequencycontrolled drive and suggests the way of noise correction. The system controls the electric motor through the variable frequency drive, and the electric motor drives the pump. The control system contains pressure, speed, electric current sensors and corresponding controllers. The main module of the system is a pulsation correction module, which creates pressure pulsations at the pump outlet. The essence of the method is to increase the rotation speed of the electric motor when the reverse flow occurs. The pulsation correction module is software controlled with respect to the pump own parameters: rotational speed and outlet pressure. By means of iterative methods the optimum ratio of the control function parameters − amplitude and initial phase shift − is selected algorithmically. The adaptation algorithm makes it possible to perform the realignment promptly and effectively control the corrective flow. Since the developed system does not contain any additional mechanical units, as a result we get an economical, efficient and low-cost solution. The paper proposes a way to reduce the noise of pumping systems, based on the introduction of a noise correction module, a pumping system control system, based on the introduction of control signals for the frequency-controlled electric drive, and also proposes a type of control signal for the noise correction module and defines the main control parameters.

Keywords: frequency-controlled drive, pump, correction, production noise, regulator, flow, controller, rotation speed.



1. Bashta T. M, Rudnev S. S, Nekrasov B. B. Gidravlika, gidromashiny i gidroprivody [Hydraulics, hydraulic machines and hydraulic drives]. 2-e izd., pererab. M. : Mashinostroenie, 1982. 423 p.

2. Rodionov L. V., Belov G. O., Bud'ko M. V., Kryuchkov A. N., Shahmatov E. V. Razrabotka matematicheskoj modeli gidrodinamiki «zapertogo» ob"ema v shesterennom nasose[Development of the mathematical model of hydrodynamics of "trapped" volume in the gear pump] // Vestnik SGAU. 2009. № 3-3. pp. 189−193.

3. Pump noise. URL:

4. Kolesnikov A. E. Shum i vibraciya [Noise and vibration]. L. : Sudostroenie, 1988. 248 p.

5. Vladimirov M. Yu., Klimenkova O. I., Kalashnikova N. K., Chebotarev I. P. Strukturnyj shum ot nasosov otopleniya i problemy ego snizheniya v zhilyh i obshchestvennyh zdaniyah [Structural noise from heating pumps and the problems of its reduction in residential and public buildings] // Stroitel'stvo i tekhnogennaya bezopasnost'. 2016. № 4 (56). pp. 87−91.

6. Energoeffektivnost' nasosnogo oborudovaniya [Energy efficiency of pumping equipment]. URL:

7. Zakirnichnaya M. M., Sulejmanov M. R., Nafikov A. F. Ispol'zovanie rezul'tatov sluzhby tekhnicheskoj diagnostiki pri provedenii remonta nasosnogo oborudovaniya [Using the results of the technical diagnostics service for repair of pumping equipment] // Neftegazovoe delo, 2004. № 2. 6 p. URL:

8. Amus'ev G. Skvazhinnye nasosy: optimizaciya raboty [Well pumps: optimization of work (in Russian)] // Santekhnika, otoplenie, kondicionirovanie. 2010. № 12(108). pp. 26−28.

9. Hakim'yanov M. I., Pavlova Z. H. Sovremennye chastotno-reguliruemye elektroprivody skvazhinnyh nasosov [Modern frequency-controlled electric drives of downhole pumps] // Neftepromyslovoe delo. 2012. № 6. pp. 29−34.

10. Shestaka A. I., Mel'nikova L. V., Kalinin A. G. Chastotno-reguliruemye elektroprivody v nasosah [Frequency-regulated electric drives in pumps] // Elektrotekhnіchnі ta komp’yuternіsistemi. 2017. № 25. pp. 80−90.

11. Petrov V. A., Pugachev A. A., Petrova L. V. Chastotno-reguliruemyj privod dlya centrobezhnyh sekcionnyh nasosov [Frequency-regulated drive for centrifugal sectional pumps] // Sovremennye tekhnologii v neftegazovom dele. 2015. pp. 107−110.

12. Akmurzina D. E., Babicheva L. K. Primenenie CHRP dlya nasosov sistem teplosnabzheniya [Application of VFD for pumps of heat supply systems] // Alleya nauki. 2017. T. 3. № 9. pp. 287−291.

13. Pat. 2713105 Rossijskaya Federaciya MPK G 01 F 25/00 (2006.01). Ustanovka dlya kalibrovki schetchikov gaza v zamknutom konture pod vysokim davleniem [High-pressure closedcircuit gas meter calibration unit] / Stecenko A., Glova Yu., Nedzel's'kij S.; zayavitel' i patentoobladatel' ENERGOFLOU AG (CH). № 2019102514 ; zayavl. 06.07.2017 ; opubl. 02.03.2020, Byul. № 4.

14. Kalinin A. O. i dr. Metodika rascheta vremennyh harakteristik elementov avtomatizirovannoj sistemy upravleniya na primere zamknutogo kontura regulirovaniya davleniya na uchastke truboprovoda pod upravleniem kontrollera «Oven plk100 220» [Methodology for calcu- lating the time characteristics of the elements of an automated control system by the example of a closed pressure control loop on the pipeline section under the control of the "Aries pk100 220" controller] // Sibirskij zhurnal nauki i tekhnologij. 2017. T. 18. № 2. pp. 387−395.

15. Pavlenko S. I., Naumenko N. N., Dudin V. Yu. K voprosu opredeleniya faz raspredeleniya vozduha rotacionnogo vakuumnogo nasosa s tangencial'nym raspolozheniem lopatok [To the definition of the phases of air distribution of the rotary vacuum pump with tangential location of the blades] // Nauchno-tekhnicheskij progress v sel'skohozyajstvennom proizvodstve. 2010. pp. 107−113.

16. Rajkov A. A., Salikeev S. I., Burmistrov A. V. Matematicheskaya model' kulachkovo-zubchatogo nasosa. Indikatornye diagrammy [Mathematical model of a cam-jaw pump. Indicator Diagrams] // Vakuumnaya tekhnika i tekhno-logiya. 2011. T. 21. № 4. pp. 213−220.









DOI: 10.34286/1995-4646-2021-78-3-36-44

УДК 631.333:338:436.33


SERGEJ E. BLINOV, Postgraduate

ALEKSANDR V. SHEMYAKIN, Advanced Doctor in Engineering Sciences, Professor

Ryazan State Agrotechnological University Named after P. A. Kostychev, Russian Federation, Ryazan



Abstract. TTopicality of the research topic and statement of the problem: The sanction policy of the USA and European powers in relation to the Russian Federation and its economic partners, cause the necessity of the accelerated import substitution of agricultural production and, as consequence, ensuring food security of the country. The current economic situation, caused by the sanctions policy of some countries in relation to the Russian Federation and the unfavorable environmental situation in general, calls for the search for new solutions and the use of nature-like technologies in the agricultural sector. A serious problem of agricultural production today is the downtime of transport and technological agricultural machinery. Frequent cause of machinery elements failure, which leads to downtime, is mud deposits, which aggressively affect the structure and properties of units and parts. This dictates the need to develop effective mechanisms for cleaning machinery. Objective: Theoretical justification of a new method of cleaning transport and technological machinery in the agroindustrial complex. Methods: In carrying out the work were used such methods as a literature review, content analysis, comparative analysis, modeling. Results: A schematic computer model of a specialized constructive device was developed for effective cleaning from mud deposits of agricultural machinery, transport-technological machines. The developed schematic computer model demonstrates an experimental nozzle to work in a pneumatic abrasive unit for cleaning agricultural transport and technological machinery with the help of waste grain and compressed air. Conclusions: The use of standard nozzles with conventional abrasives is not economical and environmentally friendly. To clean the mud deposits of agricultural machinery, transport-technological machines, it is most effective to use the developed experimental nozzle, the schematic computer model of which is presented in the article.

Keywords: nature-like technologies, pneumatic abrasive installations, cleaning, mud deposits, agricultural machinery, transport-technological machines, nozzle, abrasives.



1. Timofeeva G. V. Prodovol'stvennaya bezopasnost' v sisteme ekonomicheskoj bezopasnosti regiona [Food security in the system of economic security of the region] / G. V. Timofeeva, O. V. Ivanov, E. N. Antamoshkina [i dr.] // Ekonomika i upravlenie: problemy, resheniya. 2016. № 11. pp. 26−32.

2. Nemchenko A. V., Shepit'ko O. L. Formirovanie konkurentnyh preimushchestv v agrobiznese [The formation of competitive advantages in agribusiness] // Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie. 2013. № 3−1 (31). pp. 230−235.

3. GOST 24055−2016 Tekhnika sel'skohozyajstvennaya. Metody ekspluatacionnotekhnologicheskoj ocenki (Pereizdanie) [GOST 24055−2016 Agricultural machinery. Methods of operational and technological evaluation (Reissue)]. Vved. 2018−01−01. M. : Standartinform, 2020.

4. Astahova E. M. Povyshenie effektivnosti podgotovki sel'skohozyajstvennyh mashin k hraneniyu sredstvami mashinno-tekhnologicheskih stancij s razrabotkoj metodiki ocenki kachestva [Increasing the efficiency of agricultural machinery preparation for storage by means of machine-technological stations with the development of quality assessment methodology]: dis. ... kand. tekh. nauk : 05.20.03 / Astahova Elena Mihajlovna. Ryazan', 2007. 169 p.

5. Byshov N. V. i dr. Perspektivy organizacii rabot, svyazannyh s hraneniem sel'skohozyajstvennyh mashin v sel'skom hozyajstve [Prospects for organizing work related to the storage of agricultural machinery in agriculture] // Ministerstvo sel'skogo hozyajstva Rossijskoj Federacii. Federal'noe gosudarstvennoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Ryazanskij gosudarstvennyj agrotekhnologicheskij universitet imeni P. A. Kostycheva». Ryazan', 2016. 95 p.

6.  Byshov N. V. i dr. Razvitie sistemy mezhsezonnogo hraneniya sel'skohozyaj-stvennyh mashin v usloviyah malyh i fermerskih hozyajstv [Development of the system of interseasonal storage of agricultural machinery in the conditions of small and farms] // Ministerstvo sel'skogo  hozyajstva Rossijskoj Federacii. Federal'noe gosudarstvennoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Ryazanskij gosudarstvennyj agrotekhnologicheskij universitet imeni P.A. Kostycheva». Ryazan', 2016. 112 p.

7. Shemyakin A. V. Determinal'naya model' hraneniya sel'skohozyajstvennoj tekhniki [Determinal model of agricultural machinery storage] // V Sb. : Nauchnoe nasledie professora P. A. Kostycheva v teorii i praktike sovremennoj agrarnoj nauki: Materialy Vserossijskoj nauchnoprakticheskoj konfe-rencii. Ryazan', 2005. pp. 137−139.

8. Kiselev V. A., Shemyakin A. V. Sovershenstvovanie processa ochistki tekhniki ot zagryaznenij [Improvement of the process of cleaning technics from pollution] // V Sb. : MOLODEZH' I XXI VEK−2019: Materialy IX Mezhdunarodnoj molodezhnoj nauchnoj konferencii. Kursk, 2019. pp. 279−282.

9. Braude K. Z. Metodicheskie problemy opredeleniya energoemkosti sel'skohozyajstvennoj produkcii [V usloviyah Belorussii] [Methodological problems of determining the energy intensity of agricultural production [In the conditions of Belarus]] // Vesci Nac. akad. navuk Belarusi. Ser. agrar. navuk. 2004. № 4. pp. 29−33. Rez. angl. Bibliogr.: pp. 32−33. Shifr P1637V.

10. Lind A. V. Tekhnologicheskie i tekhnicheskie predposylki optimizacii parametrov mashinno-traktornyh agregatov [Technological and technical prerequisites for optimizing the parameters of machine-tractor units] // Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta. 2017. № 3. pp. 75−78.

11. Los' I. S., Rozen A. E., Pervuhin L. B. i dr. Opyt razrabotki i sertifikacii mnogoslojnyh korrozionno-stojkih materialov s «Protektornoj pitting-zashchitoj» [Experience in the development and certification of multilayered corrosion-resistant materials with "Protective pitting protection"] // Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Tekhnicheskie nauki. 2014. № 3. pp. 117−130.

12. Logachev V. G., Makarova A. N. Korrektirovanie normativov periodichnosti tekhnicheskogo obsluzhivaniya transportno-tekhnologicheskih mashin v processe ekspluatacii [Adjustment of norms of periodicity of maintenance of transport-technological machines in operation] // Vestnik Kurganskoj GSKHA. 2015. № 4. pp. 45−47.

13. Sanitarno-epidemiologicheskie pravila SP−03: Gigienicheskie trebovaniya k organizacii tekhnologicheskih processov, proizvodstvennomu oborudovaniyu i rabochemu instrumentu [Sanitary and epidemiological rules SP Hygienic requirements for the organization of technological processes, production equipment and working tools].



DOI: 10.34286/1995-4646-2021-78-3-45-53

УДК 631.352:626.87:633.2.03


DMITRY V. ANASHIN, Senior Lecturer

SERGEY A. ANDREEV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The article deals with the optimization of the design of a robotic mower with two parallel shafts with cutting elements installed on them. Modern unsupported mowers are exposed to the torque generated by the interaction of the cutting elements with hard objects. As a result of the impact of this moment on the skeleton of the mower, the trajectory of its movement over the cultivated area may deviate from the specified one. To eliminate the influence of external influences on the movement of the mower, it is proposed to equip them with two parallel shafts, on which cutting elements rotating in opposite directions are installed. When the mower is in operation, the cutting elements of one shaft are partially caught between the cutting elements of the other. As a result, the areas of action of the cutting elements of the parallel shafts overlap. In addition to compensating for unwanted torque, this measure also reduces the size and weight of the mower. As the overlapping area increases or as the center distance decreases, the efficiency of the mower increases. However, with an excessive decrease in the center distance during operation of the mower, contact between the cutting elements may occur, leading to their failure. As a result of the theoretical analysis of the trajectory of the cutting elements, the minimum allowable distance between the axes of the biaxial structures was determined. At the same time, assumptions were made about the equality of the length of the cutting elements, about their representation in the plan in the form of straight line segments, about the insignificance of the thickness, and also about the absence of transverse vibrations of the shafts. It was found that with an increase in the number of cutting elements on each mower shaft, the value of the minimum allowable distance increases. The analysis results for mowers with two, three, four and six cutting elements are summarized in a table.

Key words: robotic mower, unsupported mowing, cutting elements, two-axis design, center distance, minimization.


1. Pridorogin M. V. Koncepciya zaluzheniya pochvy v molodyh plodovyh sadah [The concept of grassing the soil in young orchards]. Tambov , 2005. 386 p.

2. Gel'fenbejn S. P. Osnovy avtomatizacii sel'skohozyajstvennyh agregatov [Fundamentals of automation of agricultural units]. M. : Kolos, 1975. 384 p.

3. Borodin I. F., Andreev S. A. Avtomatizaciya tekhnologicheskih processov i sistemy avtomaticheskogo upravleniya [Automation of technological processes and automatic control systems]. M. : KolosS, 2006. 352 p.

4. Balabanov V. I. Navigacionnye tekhnologii v sel'skom hozyajstve. Koordinatnoe zemledelie [Navigation technologies in agriculture. Coordinate farming]: Uchebnoe posobie. M. , 2013. 102 p.

5. Anashin D. V., Andreev S. A. Ocenka energeticheskih pokazatelej robotizi-rovannyh kosilok [Estimation of energy indicators of robotic mowers] // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya «Moskovskijgosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina». 2018. № 5 (87). pp. 63−69.

6. Korn G., Korn T. Spravochnik po matematike dlya nauchnyh rabotnikov i in-zhenerov [Handbook of mathematics for scientists and engineers]. M. : Nauka. Glavnaya redakciya fizikomatematicheskoj literatury, 1984. 832 p.

7. Turbin B. G., Lur'e A. B. Sel'skohozyajstvennye mashiny. Teoriya i tekhnolo-gicheskij raschet [Agricultural machines. Theory and technological calculation]. L. : Mashinostroenie, 1967. 578 p.

8. Ruseckij A., Zhuchenko M., Dubrovin O. Sudovye dvizhiteli [Ship propulsion gears]. M. : Sudostroenie, 1971. 288 p.

9. Gluhov Yu., Kozlenko V. Vybor empiricheskih zavisimostej [A Choice of Empirical Dependences] // Nauka i zhizn'. 1990. № 10. pp. 111.

10. Trubilin E. I., Ablikov V. A. Mashiny dlya uborki sel'skohozyajstvennyh kul'tur (konstrukcii, teoriya i raschet) [Machines for harvesting crops (design, theory and calculation)]: Uchebnoe posobie. 2 izd., pererab. i dop. Krasnodar : KGAU, 2010. 352 p.



DOI: 10.34286/1995-4646-2021-78-3-54-60

УДК 636.083.14


EVGENIJ M. ONUCHIN, Ph. D. of Engineering Sciences, Associate Professor


Volga State University of Technology, Republic of Mari El, Yoshkar-Ola


Abstract. The present work is devoted to evaluation of existing and search for new means of mechanization of bedding application on cattle farms. The results of experimental studies of application and distribution of straw bedding in cubicles, barns, over the area of the premises and operating modes of finger rotor spreader are presented in it. Nowadays most cattle farms, collective farms and agroholdings use bedding mostly with straw and sawdust for warming floors and improving zoohygienic conditions of animals. In most farms they are applied manually. Not all livestock farms have mechanized this operation, even in agriculturally developed regions of Russia. Mechanization of auxiliary processes, in particular bedding application, is also becoming increasingly important on livestock farms. Thanks to mechanization for bedding application labor costs are significantly reduced, and therefore reduced overall costs. From the above data, it follows that the work associated with the application and distribution of bedding is the most labor-intensive and is carried out mainly manually or, in some cases, with the use of simple devices.

Keywords: spreader, straw bedding, working body, finger rotor, bedding material, application, bedding spreading, farm.



1. Semenov A. N., Zakutskij S. M., Semenov S. N. Mekhanizaciya vneseniya udobrenij [Mechanization of fertilizer application: a training manual]: uchebnoe posobie. M. : Kolos, 1972. 223 p.

2. Yali I. I. Issledovanie processa uborki navoza grejfernymi mekhanizmami pri besprivyaznom soderzhanii krupnogo rogatogo skota [The study of the process of manure removal by grapple mechanisms with loose cattle housing]: avtoref. dis. … kand. tekhn. nauk. 1963. 22 p.

3. Rogovoj V. D. Tekhnologiya mekhanizacii ferm krupnogo rogatogo skota besprivyaznogo soderzhaniya [Technology of mechanization of cattle farms with no-tethered housing] // Nauchnye trudy po elektrifikacii sel'skogo hozyajstva. T. XXX. M.,1972.

4. Wandern I. F. Liegeboxen, wie die Kuh sie winsch. "Die Milch-Praxis" 1971, N 9, Heft 2.

5. Seferovich D. Pogruzochno-razgruzochnye raboty na ferme [Loading and unloading work on the farm] / Sbornik perevodov iz inostrannoj periodicheskoj pechati «Mekhanizaciya pogruzochnyh rabot v sel'skom hozyajstve». M. : Izd-vo inostrannoj literatury, 1970.

6. Plyashchenko S. I. i dr. K voprosu tekhnologii bezpodstilochnogo soderzhaniya korov [On the technology of litterless cow traffic] // Nauchnye trudy po elektrifikacii sel'skogo hozyajstva. T. XXX. M.,1972.

7. Vedenyapin G. V. Obshchaya metodika eksperimental'nogo issledovaniya i ob-rabotki opytnyh dannyh [General methods of experimental research and experimental data processing]. M. : Kolos, 1973. 199 p.

8. Issledovanie svojstv podstilochnogo materiala dlya zhivotnyh Severokavkazkogo regiona [Study of the properties of bedding material for animals of the North Caucasus region] / A. G. Sergienko, V. A. Luhanin, S. P. Psyukalo, E. V. Usova // Politematicheskij setevoj elektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyj zhurnal KubGAU). 2015. № 109. pp. 597–607.

9. Tishchenko M. A., Sergienko A. G. Malogabaritnyj izmel'chitel' [Small-size shredder] // Sel'skij mekhanizator. 2002. № 1. pp. 49.

10.  Sharshunov V. Raspredelenie podstilki v zhivotnovodcheskom pomeshchenii [Distribution of bedding in a livestock building] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. 1989. № 5. pp. 24−26.

11. Mashina dlya razbrasyvaniya podstilki i razdachi kormov [Machine for spreading litter and distributing fodder]. Tekhnicheskoe opisanie i instrukciya po ekspluatacii. VNIPTIOU. 1989. 1-6.

12. Mobil'nyj pricepnoj razdatchik kormov i podstilki L-440 // Land technik. 1985. № 2. pp. 1−2.

13. Pariev A. A., Voronin L. S., Korotchenko T. N. Tekhnologicheskoe obosnovanie ispol'zovaniya kormorazdatchika-smesitelya dlya izmel'cheniya solomy na podstilku dlya krupnogo rogatogo skota [Technological substantiation of the use of fodder mixer for chopping straw for bedding for cattle] / Sb. nauchnyh trudov: Mekhanizaciya, ekologizaciya i konvertaciya bioresursov v zhivotnovodstve / In-t mekh. zhivotnovodstva NAAN: sb. nauchnyh trudov. Zaporozh'e, 2012. Vyp. 2(10). pp. 160–164. (Ukraina).

14. Rogovoj V. D., Gridnev E. K. Opyt mekhanizirovannogo vneseniya solomennoj podstilki [Experience of mechanized introduction of straw litter] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. Vip. 7. K. : Urozhaj, 1967.

15. Demidovich B. P. i dr. Chislennye metody analiza [Numerical methods of analysis]. M. : Nauka, 1967.

16. MOTROL. Commission of Motorization and Energetics in Agriculture. 2016. Vol. 18. No.1. 37–42.



DOI: 10.34286/1995-4646-2021-78-3-61-68

УДК 637.112.3:53.084.4


ANDREY L. SAMOILOV, Dairy Equipment Specialist

McLanahan Corporation, Russian Federation, Belgorod region


Abstract. The article is devoted to the consideration of current problems associated with the improvement of technical equipment and improving the efficiency of milking parlors. In the course of the study special attention is paid to the processes of calibration of measuring vessels, which currently show a high percentage of error. For the decision of the designated problem it was offered to use technologies and equipment of GEA Farm Technologies company. In order to put this recommendation into practice a fundamentally new method of calibration of Metatron gauging vessels in milking parlors manufactured by GEA Company was developed and implemented. The key difference of the given technique which provides its undoubted advantage in comparison with the existing works is that the calibration process is carried out not by the calibration fluid but by real milk and goes on directly in the process of milking animals on installation and thus doesn't disturb the technological cycles of production. Approbation of the author's proposals was carried out on the example of milking parlors Europarallel Global 90 GEA Westfalia Serge at MK 1 x. Zorinsky Dvory with the use of Metatron measuring vessels. As a result, an error level of less than 2 % was achieved, which is an acceptable value.

Key words: measuring vessel, calibration, milking parlor, error, experiment.



1. Pisarenko P. I., Kutuzova T. P., Purtova N. S. Tendencii razvitiya krest'yanskih (fermerskih) hozyajstv i individual'nyh predprinimatelej v Rossii [Trends in the development of peasant (farmer) households and individual entrepreneurs in Russia] // Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2019. № 44. pp. 90−94.

2. Sizova N. P., Trufanova S. V. Razvitie krest'yanskih (fermerskih) hozyajstv v regionah Rossii [The development of peasant (farmer) households in the regions of Russia] // Finansovaya ekonomika. 2020. № 12. pp. 180−185.

3. Sedov A. M. Sozdanie otechestvennogo cifrovogo intellektualizirovannogo doil'nogo zala [Creation of a domestic digital intellectualized milking parlor] // Elektrotekhnologii i elektrooborudovanie v APK. 2019. № 3 (36). pp. 68−73.

4.  Ruzin S. S., Vladimirov F. E., Yurochka S. S., Dovgerd G. A. Obosnovanie tekhnologicheskih skhem i parametrov robotizirovannyh doil'nyh zalov [Justification of technological schemes and parameters of robotic milking parlors] // Sel'skohozyajstvennye mashiny i tekhnologii. 2020. T. 14. № 3. pp. 20−26.

5. Skorkin V. K., Larkin D. K., Aksenova V. P., Andryuhina O. L. Sravnitel'naya ekonomicheskaya ocenka doeniya korov v molokoprovod i doil'nom zale [Comparative economic evaluation of milking cows in the dairy pipeline and milking parlor] // Vestnik Vserossijskogo nauchno-issledovatel'skogo instituta mekhanizacii zhivotnovodstva. 2015. № 1 (17). pp. 40−46.

6. Obuhovskij V., Dershen' Yu., Luhtan M. Ekonomim vremya na doenii [Saving time at milking] // Zhivotnovodstvo Rossii. 2017. № 1. pp. 51.

7. Skorkin V. K., Larkin D. K., Aksenova V. P., Andryuhina O. L. Rezervy povysheniya proizvoditel'nosti truda za schet avtomatizacii podgotovitel'no zaklyuchitel'nyh operacij pri doenii korov [Reserves to increase labor productivity through the automation of preparatorytwitching operations when milking cows] // Vestnik Vserossijskogo nauchno-issledovatel'skogo instituta mekhanizacii zhivotnovodstva. 2015. № 3 (19). pp. 62−68.

8. Matveev V. Yu. Sokrashchenie zatrat na mojku molokoprovodov doil'nyh ustanovok [Reducing costs of washing milk pipelines of milking machines] // Sel'skohozyajstvennaya tekhnika: obsluzhivanie i remont. 2020. № 5. pp. 41−45.

9. Ratnikov A. R. Sovremennye doil'nye ustanovki [Modern milking machines] // Pridneprovskij nauchnyj vestnik. 2019. T. 6. № 3. pp. 13−15.

10. Tareeva O. A., Danilov D. Yu., Borisova E. E. Osnovnye tekhnologicheskie raschety pri vybore rotorno-konvejernyh doil'nyh ustanovok [Basic technological calculations in the selection of rotary-conveyor milking units] // Ekonomika i predprinimatel'stvo. 2019. № 4 (105). pp. 1153−1157.



DOI: 10.34286/1995-4646-2021-78-3-69-79

УДК 636.08.631.22


ALEKSEY A. PUTAN, The Educational Master

SERGEY N. DEVYANIN, Advanced Doctor in Engineering Sciences, Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow


Abstract. To provide a microclimate in livestock complexes with the use of energy-saving equipment it is required to create equipment capable of working in conditions of low temperatures. To organize the work of such equipment we need a mathematical model to simulate the work of both energy-saving equipment and the whole microclimate system in conditions of low temperatures. The article suggests dividing recuperator operation into several modes depending on the state of exhaust air in the recuperator exhaust duct: "dry" operation mode, "with condensate formation" mode and "with frost formation" mode. We propose a mathematical model for "dry" mode of operation of counter-current recuperator with plate heat-exchange unit of honeycomb polycarbonate. The mathematical model based on the criterial equation makes it possible to calculate the value of heat transfer and heat and humidity parameters of the air in the supply and exhaust ducts that makes it possible to predict the modes of recuperator operation in the "dry" mode until the mode "with condensate formation" comes. The suggested mathematical model is used to give the outside air temperature values for the "dry" mode of operation in the range of the supply and exhaust fans from 100 to 17 %. It is calculated that in "dry" mode of counter-current recuperator operation at maximum supply and exhaust fan capacity of 6000 m3/h and outside temperature above 8,6 °С the heat output will be 9,6 kW, heat recovery coefficient − 0,41.

Keywords: ventilation, mathematical model, microclimate, heat recovery, pig breeding, heat utilization, energy saving.



1. Ivanov Yu. G., Ponizovkin D. A. Vliyanie parametrov vozdushnoj sredy korovnika na fiziologicheskie pokazateli zhivotnyh [Influence of the parameters of the air environment of the barn on the physiological indicators of animals] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. 2015. № 4. pp. 18–21.

2. Ivanov S. I., Samarin G. N. Energosberegayushchaya sistema formirovaniya mikroklimata [Energy-saving system of microclimate formation] // Sel'skij mekhanizator. 2013. № 3. pp. 28−29.

3. Kalish I., Schuh W. Einflus der Schadqase Ammoniak und Schwefelwasserstoff in der Snalluft auf die Mastleistung der Schweine // Titarztliehe Unsehau, 1979. № 1. pp. 36–45.

4. Ignatkin I. Yu. Opyt vnedreniya sistemy rekuperacii tepla ventilyacionnogo vozduha v sistemu podderzhaniya mikroklimata v svinarnike OOO «Firma «Mortadel'» [Experience of implementing a system of ventilation air heat recovery in the system of maintaining microclimate in the pig house of Firma Mortadel LLC] / I. Yu. Ignatkin, M. G. Kuryachij, A. A. Putan, A. M. Bondarev, A. V. Arhipcev // Innovacii v sel'skom hozyajstve. 2014. № 4(9). pp. 256−261.

5.  Kazancev S. P., Ignatkin I. Yu. Rekuperator teploty dlya svinovodcheskogo kompleksa [Heat recuperator for the pig complex] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. 2013. № 4. pp. 17−18.

6.  Ignatkin I. Yu., Bondarev A. M., Kuryachij M. G., Putan A. A., Arhipcev A. V. Opyt vnedreniya sistemy rekuperacii tepla ventilyacionnogo vozduha v sistemu podderzhaniya mikroklimata v svinarnike OOO «FIRMA «MORTADEL'» [Experience of implementing a system of ventilation air heat recovery in the system of maintaining microclimate in a pigsty FIRMA "MORTADEL" LLC] // Innovacii v sel'skom hozyajstve. 2014. № 4 (9). pp. 256−261.

7. Rasstrigin V. N., Tihomirov A. V., Tihomirov D. A., Pershin A. F. Metodika rascheta energosberegayushchej sistemy mikroklimata s elektroteploutilizatorom i ozonatorom [Calculation methods of energy-saving system of microclimate with electro-heat exchanger and ozonator (in Russian)] // Tekhnika v sel'skom hozyajstve. 2006. № 2. pp. 19−23.

8.  Lebedev D. P., Shatalov M. P. Teplomassoobmen v teploutilizacionnoj ustanovke [Heat and mass transfer in heat recovery unit] // Trudy 7-j Mezhdunarodnoj nauchnotekhnicheskoj konferencii. Ch. 3. Energosberegayushchie tekhnologii v zhivotnovodstve i stacionarnoj energetike. M. : GNU VIESKH, 2010. pp. 229−234.

9. Gulevskij V. A., Shackij V. P., Vysockaya Zh. V. Ob analiticheskom reshenii matematicheskoj modeli teplomassoperenosa v kanalah vodoisparitel'nogo ohladitelya [On the Analytical Solution of Mathematical Model of Heat and Mass Transfer in Channels of WaterVapour Cooler] // Sovremennye metody teorii funkcij i smezhnye problemy: Materialy voronezhskoj zimnej matematicheskoj shkoly. Voronezh : VGU, 2007. pp. 242−243.

10. Pat. 2640898 Rossijskaya Federaciya, MPK F 24 H 3/02 (2006.01), F 24 H 9/00 (2006.01), F 16 K 21/00 (2006.01) Teploutilizacionnaya ustanovka [Heat recovery system] / Il'in I. V., Ignatkin I. Yu.; zayavitel' i patentoobladatel' FGBOU VO RGAU−MSKHA imeni K. A. Timiryazeva. 2016127597 ; zayavl. 08.07.16 ; opubl. 12.01.18, Byul. № 2.

11. Conrad O. Untersuchung über das Verhalten zweiter gegeneinander strömender Wandstralen. Gesundheits – Ingenieur. 1972. N 10. pp. 303−308.

12. Person H. L. Performance of a counterflow heat exchanger in a swine farrowing room // American Society of Agricultural Engineers / H. L. Person, D. Al. Chalabi, R. Y. Ofoli. 1998. N 83. pp. 253.

13. Stauffer L. A. Ventilation heat recovery with a heat pipe heat exehanger. Agricultural Energy, ASAE publication. 2001. V. 1. pp. 137.

14. Kichigin M. A., Kostenko G. N. Teploobmennye apparaty i vyparnye ustanovki [Heat-exchange apparatuses and evaporator plants]. L. : Gosenergoizdat, 1955. 392 p.

15.  Nesterenko A. V. Osnovy termodinamicheskih raschetov ventilyacii i kondicionirovaniya vozduha [Fundamentals of thermodynamic calculations of ventilation and air conditioning]. M. : Vysshaya shkola, 1971. 459 p.




DOI: 10.34286/1995-4646-2021-78-3-80-88

УДК 631.171:631.6


IRINA F. YURCHENKO, Advanced Doctor in Engineering Sciences, Associate Professor, Senior Scientist

All-Russia Research Institute of Hydraulic Engineering and Reclamation by the name of A. N. Kostyakov, Moscow, Russia



Abstract. Despite the growing understanding of the importance of digitalization of agricultural production at all levels of management and the high potential of Russia  agribusiness in the application of digital agricultural technologies, the process of large-scale formation of "digital" in the system of crop production is not developing effectively. The purpose of the present research is to develop basic principles on organizational support of transition from the system of manual and/or mechanized regulation of reclamation regime of agroecosystem to automated one with minimization of production losses. The object of the research is represented by the reclamation agro-technology management system, the subject of the research is the automated control of technological processes of agricultural production on reclaimed land. Scientific novelty of the work is determined by the creation of theoretically sound and, if possible, practically tested recommendations on organizational support for the effective implementation and use of digital technologies for agricultural production management on reclaimed land. Practical significance of research is conditioned by formation of growing motivation of commodity producers to implement implementation of digitalization in agricultural production on the background of effective information about possibilities of reducing risks of negative organizational decisions of the transition period. The basic method of research was the information-analytical approach, using methods of study of open access materials on the challenge of digitalization to the practice of agricultural production based on the theory of system analysis, methods of analogous and expert evaluations. As a part of research: analysis and evaluation of distinctive features of organizational support of automation of land reclamation complexes have been carried out; risk factors of efficiency of introduction of ACS TP into practice of land reclamation have been determined; recommendations for improving the efficiency of organizational support of development, implementation and use of automated systems of regulation of reclamation regime of agroecosystems have been formed. The obtained decisions on the improvement of organizational measures for the automated systems of regulation of the ameliorative regime of agroecosystems guarantee the efficiency of development of the "smart irrigation" technologies integrated into the procedures of prescription control of the agrophytocenosis productivity.

Keywords: reclamation, digitalization, automation, organization, efficiency, risks.



1.  Ognivcev S. B. Cifrovizaciya ekonomiki i ekonomika cifrovizacii [Digitalization of the economy and the economy of digitalization] // Mezhdunarodnyj sel'skohozyajstvennyj zhurnal. 2019. № 2 (368). pp. 77−80.

2. Kirejcheva L. V., Yurchenko I. F., Yashin V. M. Modeli i informacionnye tekhnologii upravleniya vodopol'zovaniem na meliorativnyh sistemah, obespechivayushchie blagopriyatnyj meliorativnyj rezhim [Models and information technologies of water use management on meliorative systems, providing a favorable meliorative regime] // Melioraciya i vodnoe hozyajstvo. 2014. № 5-6. pp. 50−55.

3. Kadomceva M. E., Nejfel'd V. V. Regional'nye osobennosti ispol'zovaniya tekhnologij tochnogo zemledeliya v sel'skom hozyajstve [Regional peculiarities of using precision farming technologies in agriculture] // Problemy razvitiya territorii. 2021. T. 25. No 2. pp. 73–89. DOI: 10.15838/ptd.2021.2.112.5.

4. Kirejcheva L. V., Yurchenko I. F., Yashin V. M. Metodicheskie rekomendacii po ocenke ekologicheskoj i meliorativnoj situacij na oroshaemyh zemlyah [Methodical recommendations on assessment of ecological and meliorative situations on irrigated lands] / Otvetstvennyj za podgotovku − akad. RASKHN B. B. Shumakov. M. : Rossel'hozakademiya, 1994. 56 p.

5. Balakaj G. T., Yurchenko I. F., Lentyaeva E. A., Yalalova G. H. Bezopasnost' beskhozyajnyh gidrotekhnicheskih sooruzhenij: Bezopasnost' beskhozyajnyh gidrotekhnicheskih sooruzhenij meliorativnogo vodohozyajstvennogo kompleksa [Safety of ownerless hydraulic structures: Safety of ownerless hydraulic structures of meliorative water management complex]. Germaniya : LAP LAMBERT, 2016. 85 p. ISBN 9783659547454.

6. Nosov A. K., Yurchenko I. F. Vyyavlenie potencial'no opasnyh GTS sfery melioracij [Identification of potentially dangerous HS in the sphere of land reclamation] // Puti povysheniya effektivnosti oroshaemogo zemledeliya: Sb. nauchnyh trudov. 2013. № 51. pp. 101−110.

7. Bandurin M. A., Volosukhin V. A., Yurchenko I. F. The Efficiency of Impervious Protection of Hydraulic Structures of Irrigation Systems // Advances in Engineering Research, Tyumen, 16–20 iyulya 2018 goda. Tyumen : Atlantis Press, 2018. pp. 56−61.

8. Reclamation Measures to Ensure the Reliability of Soil Fertility / I. F. Yurchenko, M. A. Bandurin, V. A. Volosukhin [et al.] // Advances in Engineering Research, Tyumen, 16–20 iyulya 2018 goda. Tyumen : Atlantis Press, 2018. pp. 62−66.

9. Minin P. E. Analiz sushchestvuyushchih avtomatizirovannyh sistem upravleniya tekhnologicheskim processom [Analysis of existing automated process control systems] / P. E. Minin, V. N. Konev, N. V. Sychev, A. S. Krymov, A. V. Savchuk, D. A. Andryakov // Spectekhnika i svyaz'. 2014. № 1. pp. 29−37. URL:

10. Koncepciya «Nauchno-tekhnologicheskogo razvitiya cifrovogo sel'skogo hozyajstva» [Concept of "Scientific and technological development of digital agriculture"]. URL:

11. Savina T. N. Cifrovaya ekonomika kak novaya paradigma razvitiya: vyzovy, vozmozhnosti i perspektivy [Digital economy as a new development paradigm: challenges, opportunities and prospects] // Finansy i kredit. 2018. № 3(771). URL:

12. Zaharyan A. V., Pomerko E. S., Negodova A. V., Davydenko M. A. Cifrovaya ekonomika i perspektivy ee rosta na 2018–2020 gody [Digital economy and prospects for its growth in 2018–2020 years] // Ekonomika i predprinimatel'stvo. 2018. № 5 (94). pp. 169−173.

13. Kanyuk G. I., Babenko I. A., Kozlova M. L., Suk I. V., Mezerya A. Yu. Ob obshchih nauchnyh podhodah k sozdaniyu unificirovannyh precizionnyh energosbere-gayushchih ASU TP [On general scientific approaches to the creation of unified precision energy-saving APCS] // Energosberezhenie. Energetika. Energoaudit. 2016. № 2 (145). pp. 20−32. URL:

14. Lehmann R. J., Reiche R., Schiefer G. 2012. Future internet and the agrifood sector: State-of-the-art in literature and research. Comput. Electron. Agric. 89: pp. 158−174.

15. Chakravorti B., Chaturvedi R. Sh. Digital Planet 2017: How Competitiveness and Trust in Digital Economies Vary Across the World. Medford: The Fletcher school Tufts university, 2017. 70 p. URL:

16. Yang S. H. Internet-based Control Systems: Design and Applications / Springer, 2011. 224 p.

17. Heather Clancy Why smart irrigation startups are bubbling up. URL:

18. Tevatronic. Autonomous Irrigation. URL:

19. Mobile Drip Irrigation. URL:

20. Variable Rate Irrigation (VRI) Animation. URL:

21. Kumari R. et al. Input-Output Analysis for Rural Industrial Development of Patna Region // Journal of Regional Development and Planning. 2014. T. 3. № 2. pp. 37−50.

22. Adesta E. Y. T., Agusman D., Avicenna A. Internet of Things (IoT) in Agriculture Industries // Indonesian Journal of Electrical Engineering and Informatics (IJEEI). 2017. T. 5. № 4. pp. 376−382. 



DOI: 10.34286/1995-4646-2021-78-3-89-96

УДК 658.003.13


DINA D. AIKIMBAEVA, Postgraduate

Omsk State Technical University, Russian Federation, Omsk

RAKHAT T. KALABAY, Master’s Degree

Master student Pavlodar State University named after S. Toraigyrov, Kazahstan, Pavlodar

ERLAN A. SARSENBAYEV, Ph. D of Engineering Sciences

NAO Kazakh National Research Technical University named after K. I. Satpaeva, Republic of Kazakhstan, Almaty



Abstract. In this article the author considers he following questions: a) modern conditions for the development of the technological process. The main direction of the planning and enterprise management is the use of the modern technologies of the strategic planning and management in order to the improve efficiency; when developing innovative strategies and forecasting activities of any enterprise, special attention should be paid to the optimal organization of the technological process; b) the principles and criteria of «optimality» of the organization of the technological process in the framework of increasing the efficiency of enterprise management. The division of the technological process into separate elements opens up opportunities for a qualitative analysis of each stage, a clear distribution of the labor costs, effective standardization of the labor and productivity growth; c) technological design and development of a technological map. The developed technological process is documented, in fact, a number of the documents should be received that regulate all processes, regime and technological maps. One of the leading roles is assigned to the technological map among the specified documents. It is the main document, which reflects all the information on production technology, a complete description of the production process with division into operations, types of equipment and tools at each production stage, operating modes, the level of qualifications of the working personnel; the definition of the concepts «production process», «technological process», «elementary technological process», «production operation», «technological map» is given.

Keywords: strategic planning, project approach, process organization, flow chart, technical and economic indicators.



1. Proizvodstvo [Production]. URL:

2. Proizvodstvennyj process i ego struktura [The production process and its structure]. URL:

3. Andyk V. S. Avtomatizirovannye sistemy upravleniya tekhnologicheskimi processami na TES [Automated control systems for technological processes at TPPs]: uchebnik dlya vuzov. M. : Yurajt, 2017. 407 p.

4. Tekhnologicheskij process [Technological process]. URL:

5. Organizaciya proizvodstva [Organization of production]. URL:

6. Proektno-orientirovannaya sistema upravleniya v organizacii [Project-oriented management system in the organization]. URL:

7. Belova T. A., Danilin V. N. Tekhnologiya i organizaciya proizvodstva produkcii i uslug [Technology and organization of production of products and services]. M. : KnoRus, 2013. 352 p.

8. Batanova M. V., Karceva N. S., Valiullova R. I., Shapagatov S. R. Biznesprocessy na promyshlennom predpriyatii [Business processes at an industrial enterprise] // Molodoj uchenyj. 2016. № 20 (124). pp. 260−263. URL:

9. Tekhnologicheskaya karta [Technological map]. URL:

10. Tekhnologicheskaya karta [Technological map]. URL:

11. Kuznecov V. P., Andryashina N. S. Innovacionnaya deyatel'nost' promyshlennyh predpriyatij: problemy i perspektivy [Innovative activity of industrial enterprises: problems and prospects] // Izvestiya PGPU im. V. G. Belinskogo. 2012. № 28. pp. 408–410.




DOI: 10.34286/1995-4646-2021-78-3-97-103

УДК 681.518.22:519.872


VADIM N. PRYAHIN, Advanced Doctor in Engineering Sciences, Professor

YURIJ A. KRYUKOV, Ph. D. of Engineering Sciences, Vice-Rector

Dubna University, Russian Federation, Dubna

MARTIK A. KARAPETYAN, Advanced Doctor in Engineering Sciences, Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The paper considers the use of mass service systems as a means to study the objects of power engineering, industrial and agricultural production under various test conditions. It is established that the main difference between simulation modeling and other methods of studying the parameters and indicators of automated systems is the possibility to optimize the system under study before its implementation under production conditions. Such statement of the problem is associated with difficulties, which, as a rule, arise in the study of probabilistic processes and modes of operation of complex systems. It is established that the calculation and analysis of most characteristics of mass service systems isone of the main types of research of systems operating in both stochastic and deterministic modes under emergency conditions. In most cases, energy facilities in operation require solving such complex problems as the study of an automated system using an analytical method together with simulation modeling. The main performance indicators of mass service systems, calculated using the required method and algorithm of the investigated operations, are given. The analytical model for the calculation of performance indicators is presented, and stochastic simulation modeling is used for the solution of the task. The basic varieties of simulation modeling approaches are investigated and the algorithm of the stages of modeling of such kind of systems is given.

Keywords: mass service system, energy information complex, mathematical and simulation modeling, intensity of service flow, deterministic and stochastic modes.



1. Berezhnaya E. V., Berezhnoj V. I. Matematicheskie metody modelirovaniya ekonomicheskih sistem [Mathematical methods of modeling of economic systems]. M. , 2007. 432 p.

2. Radchenko T. A., Dylevskij A. V. Metody analiza sistem massovogo obsluzhivaniya [Methods of analysis of mass service systems.]. Voronezh, 2007. 62 p.

3. Ivanov P. V., Tkachenko I. V. Ekonomiko-matematicheskoe modelirovanie v APK [Economic and mathematical modeling in the agroindustrial complex]: Uchebnoe posobie. Rostov-n/D: Feniks, 2013. 254 p.

4. Pryahin V. N., Bol'shakov N. A., Zilonov M. O., Zhujkov Yu. F. Veroyatnostnoe prognozirovanie v usloviyah sel'skohozyajstvenogo proizvodstva [Probabilistic forecasting in terms of agricultural production] // Aspirant i soiskatel'. 2003. № 5. pp. 213−215.

5. Pryahin V. N., Karapetyan M. A., Kryukov Yu. A. Sovershenstvovanie tekhnicheskih sredstv i tekhnologicheskih processov sel'skohozyajstvennogo proizvodstva [Improvement of technical means and technological processes of agricultural production]: Monografiya. M. : Sputnik +, 2021. 258 p.

6. Kryukov YU. A., Pryahin V. N., Mochunova N. A. Ekonomiko-matematicheskoe modelirovanie na ob"ektah APK [Economic and mathematical modeling at the objects of agroindustrial complex] // Vestnik MOAEBP. 2020. Vyp. № 22(29). pp. 5−11.

7. Karapetyan M. A., Maksimov V. M. Prognozirovanie vozmozhnosti razlichnyh sistem massovogo obsluzhivaniya v usloviyah proizvodstva [Predicting the possibility of different systems of mass service under production conditions] // Vestnik MOAEBP. 2020. Vyp. № 22(29). pp. 16−22.

8. Karapetyan M. A., Pryahin V. N. Primenenie sistem massovogo obsluzhivaniya v promyshlennom i sel'skohozyajstvennom proizvodstve [Application of mass service systems in industrial and agricultural production] // Nauka Rossii: Celi i zadachi: Sbornik nauchnyh trudov po materialam XXVII mezhdunarodnoj konferencii (10 iyunya 2021 g.). Ch. 1. Ekaterinburg : NIC «L-Zhurnal», 2021. pp. 118−124.

9. Pryahin V. N., Kryukov Yu. A., Maksimov V. M. Sistemnyj analiz i modelirovanie opasnyh processov v tekhnosfere [System analysis and modeling of dangerous processes in technosphere] // Vestnik MOAEBP. 2020. Vyp. № 22(29). pp. 23−29.

10. Kryukov Yu. A. Intellektual'naya raspredelitel'naya set' peredachi elektroenergii i dannyh kak tekhnologiya, obespechivayushchaya proryvnye izmeneniya v elektroenergetike i svyazi [Intelligent Distribution Network of Electric Power and Data Transmission as a Technology Providing Breakthrough Changes in Electric Power Industry and Communication] // Russkij inzhener 2012. № 2(33). pp. 57−61.

11. Pryahin V. N., Karapetyan M. A., Maksimov V. M. Primenenie imitaci-onnogo modelirovaniya, kak logiko-matematicheskogo opisaniya tekhniko-ekonomicheskih ob"ektov [Application of Simulation Modeling as Logical and Mathematical Description of Technical and Economic Objects] // Nauka Rossii: Celi i zadachi: Sbornik nauchnyh trudov po materialam XXVII mezhdunarodnoj konferencii (10 iyunya 2021 g.). Ch. 1. Ekaterinburg : NIC «L-Zhurnal», 2021. pp. 114−117.



DOI: 10.34286/1995-4646-2021-78-3-104-111

УДК (631.37:656.09).003.13



OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor, Academician of the RAS

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract.Agricultural freight transportation has a number of features − seasonality in harvesting, leading to fluctuations in freight turnover and volume of transportation; short harvesting periods that require hard work of road transport, uneven maturity of crops in different climatic and soil regions of the country; yield fluctuations that occur during drought and other adverse climatic conditions; difficult road conditions for rolling stock, especially in the spring and autumn period; low volume of goods transported by truck. In connection with these features are considered promising directions for the development of agriculture in the Russian Federation. The aim of this work is to improve the efficiency of transportation in the harvesting of potatoes through the proper selection of machine tractor fleet. The expediency of the use of new equipment and application of high technologies in crop production is outlined. The paper identifies a set of machines for harvesting potatoes, taking into account the technical characteristics and performance, the required number of potato harvesters for potato harvesting. The reasons and conditions of potato tubers damage when removing them from the field have been analyzed. The balance of shift time at the normative duration has been calculated. The economic assessment of the main indicators of the normative-technological map for harvesting and transporting potatoes has been carried out.

Keywords: agriculture, transport support, transport-port service, production cost, harvesting-transport complex, labor input.



1. Didmanidze R. N., Guzalov A. S. Algoritm racional'nogo ispol'zovaniya transportnyh sredstv v proizvodstvennom processe [Algorithm of rational use of vehicles in the production process] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. № 5. pp. 77−84.

2. Didmanidze R. N., Guzalov A. S. Povyshenie effektivnosti proizvodstven-nyh processov s obespecheniem konkurentosposobnosti produkcii [Increasing the efficiency of production processes to ensure product competitiveness] // V Sb.: Doklady TSKHA: Materialy mezhdunarodnoj nauchnoj konferencii. 2018. pp. 91−93.

3. Guzalov A. S., Ivleva T. V. Povyshenie effektivnosti uborki kartofelya s ispol'zovaniem innovacionnoj tekhniki vo Vladimirskoj oblasti [Increasing the efficiency of potato harvesting using innovative equipment in the Vladimir region] // V Sb.: Nauchnoinformacionnoe obespechenie innovacionnogo razvitiya APK: Materialy XI Mezhdunarodnoj nauchno-prakticheskoj internet-konferencii. 2019. pp. 421−425.

4. Beznosyuk R. V., Rembalovich G. K., Chernyshev A. D. Veroyatnost' ravnomernoj zagruzki transportnogo sredstva [Probability of uniform loading of a vehicle] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. № 3. pp. 16−21.

5. Byshov N. V., Borychev S. N., Kostenko M. Yu., Rembalovich G. K., Bajboboev N. G., Zhbanov N. S. Vliyanie konstruktivno-tekhnologicheskoj skhemy na pokazateli raboty kartofeleuborochnoj mashiny [Influence of design-technological scheme on the performance of potato-harvesting machine] // Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta im. P. A. Kostycheva. 2019. № 1(41). pp. 108−114.

6. Aldoshin N. V., Pekhutov A. S. Povyshenie proizvoditel'nosti pri perevozke sel'skohozyajstvennyh gruzov [Increasing productivity in the transportation of agricultural cargoes] // Mekhanizaciya i elektrifikaciya sel'skogo hozyajstva. 2012. № 4. pp. 26−27.

7. Gasparyan I. N., Levshin A. G. Teoriya i praktika povysheniya produktivnosti kartofelya s ispol'zovaniem dekapitacii v nechernozemnoj zone RF [Theory and practice of increasing the productivity of potatoes using decapitation in the non-chernozem zone of the Russian Federation]. Irkutsk : OOO «Megaprint», 2017. 236 p.

8. Levshin A. G., Stadnik A. V., Dryamov S. Yu. Identifikaciya i elektronnye pasporta samohodnoj tekhniki [Identification and electronic passports of self-propelled machinery] // Sel'skij mekhanizator. 2019. № 12. pp. 14−15.

9. Trifonova M. F., Sysoev A. M. Organizacionno-upravlencheskie problemy realizacii modernizacionnogo potenciala agrarno-promyshlennyh regionov Rossii [Organizational and managerial problems of realization of modernization potential of agrarian industrial regions of Russia] // Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2015. № 24. pp. 166−172.

10. Malysh M. N., Sysoev A. M., Trifonova M. F. Covremennye aspekty razvitiya agrarnogo predprinimatel'stva [Modern aspects of the development of agrarian entrepreneurship] // Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2015. № 24. pp. 146−150.

11. Didmanidze O. N., Guzalov A. S., Bol'shakov N. A. Sovremennyj uroven' razvitiya dvigatelej s gazomotornoj i elektricheskoj silovoj ustanovkami na tyagovo-transportnyh sredstvah [Modern level of development of engines with gas and electric power plants on traction vehicles] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. № 4. pp. 52−59.

12. Tambovcev M. A., Andreev O. P. Modelirovanie imitacionnoj sistemy v real'nom vremeni upravleniya teploobmennymi processami [Simulation of the simulation system in real time control of heat exchange processes] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2018. № 1. pp. 87−90.

13. Chutcheva Yu. V., Pulyaev N. N., Korotkih Yu. S. Perspektivnye naprvleniya razvitiya tyagovo-transportnyh sredstv dlya sel'skogo hozyajstva [Prospective directions of development of traction-transport means for agriculture] // Tekhnika i oborudovanie dlya sela. 2020. № 9(279). pp. 2−5.

14. Sysoev A. M., Lyubkina O. R., Solomatina E. D. Effektivnost' proektov gosudarstvenno-chastnogo partnerstva v social'noj sfere v rossijskih regionah (na primere oblastej CFO) [Effectiveness of Public-Private Partnership Projects in the Social Sphere in the Russian Regions (on the Example of the Central Federal District)] // Ekonomika i predprinimatel'stvo. 2020. № 11(124). pp. 652−654.

15. Gasparyan I. N., Bicoev B. A., Berezovskij E. V., Pastuhov S. A., Polyakova M. N. Formirovanie vysokourozhajnyh posadok kartofelya v nechernozemnoj zone [Formation of high-yield potato plantings in the non-chernozem zone] // Mezhdunarodnyj tekhnikoekonomicheskij zhurnal. 2015. № 4. pp. 76−80.



DOI: 10.34286/1995-4646-2021-78-3-112-120

УДК 621.51+629.3.027


OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor, Academician of the RAS


IL'YA P. GUSEV, Applicant

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. Application of scientifically grounded design parameters for tractor engines supercharging is a relevant and important stage in the formation of energy saturation and reliability of agricultural machinery. This article presents an analysis of leading domestic and foreign scientists engaged in research in the field of engine construction for both automotive and tractor machinery. The aim of this work was to determine the optimal design parameters of compressor, turbine stages and running gear of supercharging system units for tractor engines. The paper considers the design and components of serially used turbochargers, their main shortcomings in operation, and ways of their elimination, and also considers complex all-mode systems. The paper presents methods for determining the optimum length and diameter of the tunable piping when designing a supercharger system. Also, the paper presents materials for manufacturing turbocharger components that ensure the long-term performance of the unit. On the basis of analysis of literary sources the optimum number of wheel blades, their rotation angles and the cross-section of the turbine stage flow part is determined. Also a review of turbine casing with bladeless guide apparatus, its structural design and examples of various forms of cross-sections of the volute casing of such turbine are presented. According to the results of this work, the main conclusions and recommendations are made, corresponding to the objectives of the study.

Keywords: tractor engines, supercharging system, gas turbine supercharger, turbocharger design parameters.



1. Sinyavskij V. V., Ivanov I. E. Forsirovanie dvigatelej i agregaty nadduva [Engine boosting and supercharging units]: Uchebnoe posobie. M. , 2016.

2. Guzalov A. S., Didmanidze O. N., Devyanin S. N. Povyshenie effektivnosti ispol'zovaniya energeticheskih sredstv putem primeneniya kombinirovannoj sistemy nadduva [Improving the efficiency of power vehicles by using a combined supercharger system] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2020. № 5. pp. 59−68.

3. Didmanidze O. N., Devyanin S. N., Guzalov A. S. Sposoby povysheniya moshchnosti dvigatelej traktorov [Methods of increasing power of tractor engines] // V Sb.: Chteniya akademika V. N. Boltinskogo: Sbornik statej. M. : OOO «Megapolis», 2020. pp. 233−239.

4. Didmanidze O. N., Guzalov A. S., Bol'shakov N. A. Sovremennyj uroven' razvitiya dvigatelej s gazomotornoj i elektricheskoj silovoj ustanovkami na tyagovo-transportnyh sredstvah [Modern level of development of gas and electric propulsion engines on traction vehicles] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. № 4. pp. 52−59.

5. Kaminskij V. N., Kaminskij R. V., Sibiryakov S. V., Grigorov I. N., Kostyukov E. A., Lazarev A. V. Razrabotka i primenenie metodiki sozdaniya tiporazmernogo ryada turbokompressorov dlya DVS razlichnogo naznacheniya [Development and application of methods of creating a typo-dimensional series of turbochargers for ICE for various purposes] // Naukograd nauka proizvodstvo obshchestvo. 2016. № 1. pp. 26−34.

6. Kaminskij V. N., Grigorov I. N., Teregulov T. I., Kaminskij R. V., Sibiryakov S. V. Raschet napryazhenno-deformirovannogo sostoyaniya kolesa kompressora turbokompressora transportnogo DVS [Calculation of the stress-strain state of the compressor wheel of the turbocharger of a transport engine] // Naukograd nauka proizvodstvo obshchestvo. 2016. № 4. pp. 46−51.

7. Gavrilov A. A., Goc A. N., Fomin V. M. Analiz struktury matematicheskoj modeli cikla porshnevogo dvigatelya [Analysis of the structure of the mathematical model of the reciprocating engine cycle] // Izvestiya MGTU MAMI. 2016. № 2(28). pp. 77−83.

8. Gavrilov A. A., Goc A. N. Issledovanie vozmozhnosti forsirovaniya dizelej Vladimirskogo motoro-traktornogo zavoda [Researching the possibility of forcing diesels of Vladimir motor-tractor plant] // Traktory i sel'hozmashiny. 2015. № 11. pp. 20−23.

9. Sysoev S. N., Bakutov A. V., Dang H. L., Andreev A. V. One-membrane drive with autonomous strut rod camera // V sb.: IOP Conference Series: Materials Science and Engineering. International Workshop "Advanced Technologies in Material Science, Mechanical and Automation Engineering – MIP: Engineering – 2019": Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering Associations. 2019. pp. 32047.

10. Tambovcev M. A., Andreev O. P. Modelirovanie imitacionnoj sistemy v real'nom vremeni upravleniya teploobmennymi processami [Simulation of simulation system in real time control of heat exchange processes] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2018. № 1. pp. 87−90.




DOI: 10.34286/1995-4646-2021-78-3-121-130

УДК 621.436.001.891



OTARI N. DIDMANIDZE, Advanced Doctor in Engineering Sciences, Professor, Academician of the Russian Academy of Sciences

SERGEJ N. DEVYANIN, Advanced Doctor in Engineering Sciences, Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. This article assesses the change in supercharging characteristics for the engine of the Minsk engine plant D-260.2, which is widely used in agricultural machinery and have a large distribution in Russia. The basic technical characteristics of engine D-260.2 and turbocharger TKR 7-00.01 are presented, as well as the calculated results of research that were conducted in order to estimate the influence of changes in boost pressure of the 1st stage pk1 on the engine boost value at two-stage boost and the possibility of increasing the coefficient of adaptability of this engine. The basis is a three-factor composite, symmetric, orthogonal 5-level plan. The resulting calculations confirm the possibility of using an electric compressor drive in a two-stage engine supercharging system and allow for controlled supercharging. The use of the first controlled stage with electric drive supercharger pressure allows to control the supercharging pressure practically on the whole external speed characteristic of the engine D-260 on the condition of limiting the maximum combustion pressure at the pressure level at the nominal mode in the basic configuration. The use of a two-stage supercharger allows increasing the engine adaptability factor by increasing the fuel supply to keep the excess air ratio as of the basic variant.

Keywords: turbocharger, engine power, adaptability factor, excess air ratio, torque, controlled supercharging, statistical data processing, electric drive, range of operating modes, pressure level.



1. Didmanidze O. N., Guzalov A. S., Bol'shakov N. A. Sovremennyj uroven' razvitiya dvigatelej s gazomotornoj i elektricheskoj silovoj ustanovkami na transportno-tyagovyh sredstvah [Modern level of development of gas and electric propulsion engines on transport and traction vehicles] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. № 4. pp. 52−59.

2. Chekieva H. R., Cadaeva H. S. Razvitie sel'skogo hozyajstva v sovremennyh usloviyah [The development of agriculture in modern conditions] // Molodoj uchenyj. 2015. № 24. pp. 347−351.

3. Dizel' D-260.1 i ego modifikacii / Rukovodstvo po ekspluatacii 260-0000100RE [Diesel engine D-260.1 and its modifications / Operation manual260-0000100RE]. Minsk. 2015. 90 p.

4. Sinyavskij V. V., Ivanov I. E. Forsirovanie dvigatelej. Sistemy i agregaty nadduva [Engine boosting. Supercharging systems and units: tutorial]: uchebnoe posobie. M. : MADI, 2015. 100 p.

5. Tablicy planov eksperimenta dlya faktornyh i polinomial'nyh modelej (spravochnoe izdanie) [Tables of Experimental Plans for Factorial and Polynomial Models (Reference Book)] / V. Z. Brodskij, L. I. Brodskij, T. I. Golikova, E. P. Nikitina, L. A. Panchenko. M. : Metallurgiya, 1982. 752 p.

6. L'vovskij E. N. Staticheskie metody postroeniya empiricheskih formul [Static methods of constructing empirical formulas]: uchebnoe posobie dlya vuzov. 2-e izd., pererab. i dop. M. : Vysshaya shkola, 1988. 239 p.




DOI: 10.34286/1995-4646-2021-78-3-131-136

УДК 631.3.083(574-243)


SERIK K. TOJGAMBAEV, Ph. D. of Engineering Sciences, ProfessorRussian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The internal combustion engine is the main power plant of cars, in this regard, the reliability of the engine depends largely on the quality of its maintenance and repair. The article suggests the layout of the site for the repair of internal combustion engines. The site plan includes issues of equipment configuration and placement necessary for engine repair. Formulas and approximate calculations are presented.

Keywords: plot, repair, engine, area, equipment.



1. San'kov V. M., Evgrafov V. A., Yurchenko N. I. Osnovy ekspluatacii transportnyh i tekhnologicheskih mashin i oborudovaniya [Fundamentals of operation of transport and technological machinery and equipment]: Uchebnik. M. : Kolos, 2001. 254 p.

2. Tojgambaev S. K. Ispytaniya dvigatelej na special'nyh stendah [Testing of engines on special benches] // Aktual'nye problemy sovremennoj nauki. 2015. № 5 (84). pp. 163−167.

3. Shnyrev A. P., Tojgambaev S. K. Ustrojstvo dlya vosstanovleniya bronzovyh vtulok [Device for the restoration of bronze bushings. In the collection: Environmental arrangement of territories] // V sb.: Prirodoohrannoe obustrojstvo territorij: Materialy nauchno-tekhnicheskoj konferencii. 2002. pp. 153−154.

4. Tojgambaev S. K. Povyshenie dolgovechnosti detalej sel'skohozyajstvennyh i meliorativnyh mashin pri primenenii processa termociklicheskoj diffuzionnoj metallizacii [Increasing the durability of parts of agricultural and reclamation machines in the application of the process of thermocyclic diffusion metallization]: dis. … kand. tekhn. nauk: 05.20.04 / Tojgambaev Serik Kokibaevich. M., 2000. 136 p.

5. Tojgambaev S. K., Usov N. I. Nekotorye sposoby povysheniya nadezhnosti gidrosistem transportnyh i tekhnologicheskih mashin [Some ways to improve the reliability of hydraulic systems of transport and technological machinery] // V sb.: Rol' prirodoobustrojstva sel'skih territorij v obespechenii ustojchivogo razvitiya APK: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii. Ministerstvo sel'skogo hozyajstva Rossijskoj Federacii, FGOU VPO Moskovskij gosudarstvennyj universitet prirodoobustrojstva. 2007. pp. 225−226.

6. Tojgambaev S. K., Evgrafov V. A. Opredelenie trudoemkosti diagnostirovaniya avtomobilej [Determination of labor intensity of car diagnostics] // Estestvennye i tekhnicheskie nauki. 2019. № 12 (138). 74 p.

7. Tojgambaev S. K., Apatenko A. S. Opredelenie sostava podrazdelenij masterskoj dlya hozyajstva Kostanajskoj oblasti [Determination of the composition of workshop units for the economy of Kostanay region] // Estestvennye i tekhnicheskie nauki. 2020. № 8 (146). pp. 207−212.

8. Tojgambaev S. K., Sokolov O. K. Optimizaciya parametrov uchastka TO i remonta mashinno-traktornogo parka [Optimization of the parameters of the maintenance and repair of the machine-tractor fleet] // V Sb.: Vestnik mezhdunarodnoj obshchestvennoj akademii ekologicheskoj bezopasnosti prirodoobustrojstva (MOAEBP). M., 2020. pp. 5−21.

9. Tojgambaev S. K. Matematicheskoe modelirovanie optimizacii parka mashin i povysheniya nadezhnosti ekspluatacii [Mathematical modeling of optimizing the fleet of machines and increasing the reliability of operation] // Aspirant i soiskatel'. 2015. № 5 (89). pp. 102−106.